
A Vignette/Tutorial to use ResistanceGA
Bill Peterman

03 November 2017

ResistanceGA

An R Package for Optimizing Resistance Surfaces using Genetic Algorithms

Background

With this vignette/tutorial, hopefully you’ll get an idea of what each of the functions in this package can do,
as well present an example (using simulated data) of how you can optimize resistance surfaces in isolation as
well as simultaneously to create novel resistance surfaces. This ‘package’ (I use that term very loosely) has
largely been developed from functions I wrote to conduct different landscape genetic analyses. See Peterman
et al. (2014) for the original conception of optimizing resistance surfaces using optimization functions. This
approach was limited to optimization of continuous surfaces in isolation. Since that paper, I’ve further
developed the optimization method to utilize genetic algorithms, implemented using the ga function from the
GA package in R. By moving to genetic algorithms, much more complex parameter space can be effectively
searched, which allows for the optimization of categorical resistance surfaces, as well as optimization of
multiple resistance surfaces simultaneously.

This package fills a void in the landscape genetics toolbox. There are various methods proposed for determining
resistance values (reviewed by Spear et al., 2010). Previously utilized methods generally searched a limited
parameter space and/or relied on expert opinion. Graves et al. (2013) utilized optimization functions and
inter-individual genetic distances to determine resistance values, but found that the data generating values
were rarely recoverable. I have not assessed the ability of functions/methods utilized in this package to
optimize resistance surfaces as in Graves et al. (2013), but do note that very different methods of scaling,
transforming, and combining resistance surfaces are utilized in ResistanceGA.

A few words of caution. I have made every effort to run and test each function with simulated data, but I
make no guarantees concerning function performance and stability. Data formatting can be a challenge, and
I have tried to simplify the process as much as possible. If you choose to optimize using CIRCUITSCAPE,
please make sure you carefully read through the CIRCUITSCAPE documentation, as well as other relevant
papers by Brad McRae to get a more complete understanding of resistance modeling and circuit theory. If
errors occur, start by making sure that you are providing function inputs in the correct format. If a function
does not work, there likely will not be a useful error message to help you troubleshoot. Depending on interest
and use, these are features that may be added in the future. Lastly, this is not a fast process. Even with the
50x50 pixel simulated landscapes used in this tutorial, each (CIRCUITSCAPE) optimization iteration takes
0.75–1.00 seconds to complete (Intel i7 3.6 GHz processor, 24 GB RAM). As of version 3.0-4, it is possible
to optimize using the commuteDistance function of gdistance. This approach is functionally equivalent to
CIRCUITSCAPE Kivimäki et al., 2014, is slightly faster, and allows the optimization algorithm to be run
in parallel. Optimizing using least cost paths is ~3x faster than with CIRCUITSCAPE, optimization with
commute-time distance is ~2x faster (although processing times for CIRCUITSCAPE and commuteDistance
converge for larger landscapes [e.g., > 1 million pixels]). To further reduce optimization time when using least
cost paths or commute-time distance, the optimization can be run in parallel. This will effectively reduce
optimization time by the number of cores used for optimization. It appears that under most circumstances
the resolution of the landscape can be reduced without loss of information (McRae et al., 2008).

As of version 3.0-1, it is possible to optimize with CIRCUITSCAPE on Linux, which allows for CIR-
CUITSCAPE to be run in parallel. This may reduce optimization times when working with large landscapes.
Depending upon whether you are optimizing a single surface or multiple surfaces simultaneously, the genetic

1

http://onlinelibrary.wiley.com/doi/10.1111/mec.12747/abstract
http://onlinelibrary.wiley.com/doi/10.1111/mec.12747/abstract
http://cran.r-project.org/web/packages/GA/index.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04657.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/mec.12348/abstract
http://www.circuitscape.org/home
http://www.circuitscape.org/pubs
https://doi.org/10.1016/j.physa.2013.09.016
http://www.esajournals.org/doi/abs/10.1890/07-1861.1

algorithms typically run for 50–300 generations. ga settings will vary for each run, but there will typically be
50–150 offspring (i.e. different parameter value realizations) per generation. This means that 2,500–45,000
iterations will be needed to complete the optimization. This can be a LONG process! If you encounter
issues while executing any of these functions, or would like some other functionality incorporated, please
let me know (bill.peterman@gmail.com). I am eager to make this as accessible, functional, and as useful as
possible, so any and all feedback is appreciated.

References
* Graves, T. A., P. Beier, and J. A. Royle. 2013. Current approaches using genetic distances produce poor
estimates of landscape resistance to interindividual dispersal. Molecular Ecology 22:3888–3903.

• Kivimäki, I., M. Shimbo, and M. Saerens. 2014. Developments in the theory of randomized shortest
paths with a comparison of graph node distances. Physica A: Statistical Mechanics and its Applications
393:600—616.

• McRae, B. H., B. G. Dickson, T. H. Keitt, and V. B. Shah. 2008. Using circuit theory to model
connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724.

• Peterman, W. E., G. M. Connette, R. D. Semlitsch, and L. S. Eggert. in press. Ecological resistance
surfaces predict fine scale genetic differentiation in a terrestrial woodland salamander. Molecular
Ecology 23:2402–2413.

• Spear, S. F., N. Balkenhol, M. J. Fortin, B. H. McRae, and K. Scribner. 2010. Use of resistance surfaces
for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology
19:3576–3591.

• Ruiz-Lopez, M. J., C. Barelli, F. Rovero, K. Hodges, C. Roos, W. E. Peterman, and N. Ting. 2016. A
novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red
colobus monkey (Procolobus gordonorum). Heredity 116:167–176.

Thoughts on Optimization

There are three options for objective functions that can be used when optimizing resistance surfaces with
ResistanceGA: (1) AIC, (2) conditional R2, or (3) log-likelihood. By default (as of version 3.0-4), the default
is to optimize using seeks to optimize using log-likelihood as the objective function. Given that the overall
goal of a landscape genetics analysis is to assign resistance values that best explain genetic differentiation, it
seems sensible to use R2. However, R2 seems not to be a sensitive enough to allow the optimization procedure
to reliably progress. Previously, AICc was used as the objective function, but it is not clear how best to
determine the sample size when calculating AICc. Prior to version 3.0-0, the number of pairwise comparisons
was used as the sample size. Now, sample size is equivalent to the number of populations included in your
analysis. This is much more conservative, and increases in model complexity are more drastically penalized.
On the topic of model complexity, this is also not a cut-and-dry assessment. All the mixed effects models
take the form:

Yij = α+ β(Xij − x) + τi + τj + eij , j = 2,n; i = 1, ..., j − 1, (1)

which is the maximum likelihood population effects parameterization (see Clarke et al., 2002). Because there
is only ever a single independent variable (the vector of pairwise transformed resistance values), all models
technically have the same number of parameters (i.e. k = 2). However, multiple values were optimized to
create these resistance values. For continuous surfaces there is a shape and a scale parameter in addition to
the intercept (k = 3), while each category within a categorical surface is estimated (k = number of categories
+ 1). When multiple surfaces are optimized simultaneously, a single composite resistance is created. It
is not possible to have each of these surfaces assessed as separate independent variables because of high
multicollinearity among surfaces that occurs during optimization. As of version 3.1-3, the default setting
for k in multisurface models is determined as the number of surfaces present in the optimization plus 1
(intercept). Again, there are no guidelines for how to determine n or k in these models. Use

2

mailto:bill.peterman@gmail.com
http://link.springer.com/article/10.1198%2F108571102320

your best judgement and clearly articulate and justify your methods. Through various testing,
it seemed that the counting each optimized parameter toward the total k over-penalized the fitted model,
leading to ambiguity about the best supported model.

Because of this uncertainty, it is now also possible to specify how k is determined: (1) k = the number of
parameters in the in mixed effects model (i.e. 2); (2) k = the total number of parameters optimized plus the
intercept; (3) k = the total number of parameters optimized, plus the number of layers and the intercept;
(4) k = the total number of surfaces optimized, plus the intercept. The method for evaluating k and the
objective function to use during optimization can both be specified in the GA.prep function.

Setup

Install necessary software and packages

If you want to optimize using CIRCUITSCAPE, this package requires that you have CIRCUITSCAPE
v4.0 or higher installed on your Windows machine. At this point in time, ResistanceGA can only execute
CIRCUITSCAPE on WINDOWS operating systems. You will also need to have R >= v3.0 installed. I would
highly recommend installing R studio when working with R.

Because it has now been determined that commuteDistance is equivalent to CIRCUITSCAPE,
it is highly recommended to to conduct all optimizations using this approach, run in parallel.
Doing so allows for all processes to be conducted within R, and will not require execution of
software outside of the R environment. If final current flow maps are desired, these can still
be generated using the optimized resistance surface using CIRCUITSCAPE.

Running on Linux

To run CIRCUITSCAPE on Linux (tested with Ubuntu 16.04):
1. Install CIRCUITSCAPE—Default installation directory is /usr/local/bin/csrun.py
2. To call CIRCUITSCAPE from R, first change file permissions from the command line terminal (shortcut:
control + alt+ t) sudo chomod 755 /usr/local/bin/csrun.py
* This will allow csrun.py to be executed without specifying paths.

If you can provide code of how to run CIRCUITSCAPE from R, I will work to implement it

R Packages
This package consists of several wrapper functions for implementing functions from other packages, and these
will all be imported when ResistanceGA is installed.

Installation

First, install ResistanceGA from GitHub. This will require the devtools package
Install 'devtools' package, if needed
if(!("devtools" %in% list.files(.libPaths()))) {

install.packages("devtools", repo = "http://cran.rstudio.com", dep = TRUE)
}

Download package, build vignette
devtools::install_github("wpeterman/ResistanceGA",

build_vignettes = TRUE)

Load ResistancaGA and clear your workspace.

3

http://www.circuitscape.org/downloads
http://www.circuitscape.org/downloads
http://www.r-project.org/
https://www.rstudio.com/ide/download/

library(ResistanceGA)
rm(list = ls())

Demonstrations

Continuous surface transformations

There are 8 different transformations that can be applied to continuous surfaces. Since the publication of
Peterman et al. (2014), I have added Reverse Ricker and Inverse-Reverse Ricker transformation to better
cover parameter space. I still think that there are more flexible ways to optimize surfaces, and I’m continuing
to develop these as I have time.

4

All of these figures were made with the Plot.trans function. This function returns a ggplot object, which
allows you to manipulate some aspects of the plot, as well as determine the resistance value at different levels
of your original surface.
Ricker.plot <- Plot.trans(PARM = c(1.5, 200),

Resistance = c(1,10),
transformation="Ricker")

5

0

20

40

60

80

100

2 4 6 8 10
Original data values

Tr
an

sf
or

m
ed

 d
at

a
va

lu
es

Ricker

Change title of plot
Ricker.plot$labels$title <- "Ricker Transformation"
Ricker.plot

0

20

40

60

80

100

2 4 6 8 10
Original data values

Tr
an

sf
or

m
ed

 d
at

a
va

lu
es

Ricker Transformation

6

Find original data value that now has maximum resistance
Ricker.plot$data$original[which(Ricker.plot$data$transformed==max(Ricker.plot$data$transformed))]

[1] 2.356784

Example Function Use

Single surface optimization

Make a directory to write ASCII files, CIRCUITSCAPE batch files, and results. It is critical that there are
NO SPACES in the specified directory as this will cause functions that interact with CIRCUITSCAPE to
fail.
if("ResistanceGA_Examples"%in%dir("C:/")==FALSE)

dir.create(file.path("C:/", "ResistanceGA_Examples"))

Create a subdirectory for the first example
dir.create(file.path("C:/ResistanceGA_Examples/","SingleSurface"))

Directory to write .asc files and results
write.dir <- "C:/ResistanceGA_Examples/SingleSurface/"

Give path to CIRCUITSCAPE .exe file
Default = '"C:/Program Files/Circuitscape/cs_run.exe"'
CS.program <- paste('"C:/Program Files/Circuitscape/cs_run.exe"')

Load resistance surfaces and export as .asc file for use with CIRCUITSCAPE. These surfaces were made
using the RandomFields package
data(resistance_surfaces)
continuous <- resistance_surfaces[[2]]
writeRaster(continuous,

filename = paste0(write.dir,"cont.asc"),
overwrite = TRUE)

Load the example sample location data and export as .txt file. This is formatted for input into CIRCUITSCAPE
data(samples)
write.table(samples,file=paste0(write.dir,"samples.txt"),sep="\t",col.names=F,row.names=F)

Create a spatial points object for plotting
sample.locales <- SpatialPoints(samples[,c(2,3)])

Plot surface and overlay the sample points
plot(continuous)
plot(sample.locales, pch = 16, col = "blue", add = TRUE) # Add points

7

0 5 10 15 20 25

0
5

10
15

20
25

7
8
9
10
11
12
13

Prepare data for optimization

Run the GA.prep and CS.prep functions
Set the random number seed to reproduce the results presented
GA.inputs <- GA.prep(ASCII.dir = write.dir,

max.cat = 500,
max.cont = 500,
select.trans = "M",
method = "LL"
seed = 555)

CS.inputs <- CS.prep(n.Pops = length(sample.locales),
CS_Point.File = paste0(write.dir,"samples.txt"),
CS.program = CS.program)

Note that response was not defined in CS.prep because it has not been made yet. When doing an actual
analysis (not a simulation, as in this example) you will specify your pairwise genetic distance data as the
response.

select.trans allows you to specify which transformations can be applied to a surface during optimization.
“A” = All; “M” = Monomolecular only; “R” = Ricker only. By default, all transformations will be assessed
when a continuous surface is optimized. See GA.prep documentation for more details. In this example, we
are constraining the genetic algorithm to only consider Monomolecular transformations. In an actual analysis,
such a constraint may or may not be desired.

Transform the raw continuous surface using the Resistance.tran function to apply one of the eight
transformations, and then view the transformation using Plot.trans. Note that Plot.trans returns a
ggplot2 object as well as the plot. Therefore you can manipulate and modify the plot as desired.

8

r.tran <- Resistance.tran(transformation = "Monomolecular",
shape = 2,
max = 275,
r = continuous)

plot.t <- Plot.trans(PARM = c(2, 275),
Resistance = continuous,
transformation = "Monomolecular")

Run the transformed resistance surface through CIRCUITSCAPE to get effective resistance between each
pair of points. Run.CS returns the lower half of the pairwise resistance matrix for use with the optimization
prep functions. This will be our response that we optimize on.
Create the true resistance/response surface
CS.response <- Run_CS(CS.inputs = CS.inputs,

GA.inputs = GA.inputs,
r = r.tran)

Rerun CS.prep including the newly created CS.response
CS.inputs <- CS.prep(n.Pops = length(sample.locales),

response = CS.response,
CS_Point.File = paste0(write.dir,"samples.txt"),
CS.program = CS.program)

Run the Single surface optimization function (SS_optim). Running this example with the default settings
took 147 iterations and ~72 minutes to complete on a computer with an Intel i7 3.6 GHz processor. The data
generating values have been precisely recovered.
SS_RESULTS <- SS_optim(CS.inputs=CS.inputs,

GA.inputs=GA.inputs)

View the results and compare with truth

SS_table <- data.frame(c("Monomolecular", 2.0, 275),
t(SS_RESULTS$ContinuousResults[c(3:5)]))
colnames(SS_table) <- c("Truth", "Optimized")

SS_table
Truth Optimized
Equation Monomolecular Monomolecular
shape 2 1.999999
max 275 274.9982

If you get the error:

Error in initializePtr() :
function 'dataptr' not provided by package 'Rcpp'

Reinstall the Rcpp package and execute the SS_optim function again.

After executing the function, the console will be updated to report the time to complete each iteration as
well as AICc of each iteration. If you do not wish to view updates at each iteration of the optimization, set
quiet = TRUE in GAp.prep

What the SS_optim function does:
* Read each .asc file that is in the specified ASCII.dir and determines whether it is a categorical or continuous
surface. A surface is considered categorical if it contains 15 or fewer unique values.
* Optimize each resistance surface

9

* Categorical surfaces: Each optimized value represents the resistance of that category to current flow
* Continuous surfaces: Each continuous surface is first rescaled so that values range from 0–10 (note that
relative spacing is preserved during rescaling). The genetic algorithm then tests different combinations of the
transformation equation, shape parameter value, and maximum resistance value. When the genetic algorithm
has finished optimization, the optimized parameters can be passed to a second optimization function that
uses nlm to fine-tune the shape and maximum value parameters (nlm = TRUE). However, this approach may
lead to overfitting and the default is nlm = FALSE.
* Several summary outputs are generated
* In the ‘Results’ directory (located in the directory with the .asc files), a final optimized resistance .asc file
has been made, along with the CIRCUITSCAPE results (.out files).
* Summary tables for continuous surfaces (ContinuousResults.csv), categorical surfaces (CategoricalRe-
sults.csv), and the objective function value for all surfaces (All_Results_AICc.csv)
* MLPE_coeff_Table.csv contains the model coefficients from the fitted mixed effects model for each surface
* In the ‘Plots’ directory there is a 4-panel figure with different model diagnostic plots generated from the
fitted mixed effects model of each optimized resistance surface. If a continuous surface was optimized, there
is also a plot showing the relationship of the transformed resistance surface with the original data.
* The returned object is a named list containing the tables described above.

Minimum code for running ResistanceGA

The example above outlines how the functions can be used while simulating and generating data with known
parameter values. When analyzing your own data, it is not necessary to to use the r.tran or Run_CS
functions. You should only have to use the following functions (although you may want to change settings
from defaults).
GA.inputs <- GA.prep(ASCII.dir = write.dir)

CS.inputs <- CS.prep(n.Pops = length(sample.locales),
response = CS.response,
CS_Point.File = paste0(write.dir,"samples.txt"),
CS.program = CS.program)

SS_RESULTS <- SS_optim(CS.inputs = CS.inputs,
GA.inputs = GA.inputs)

Optimization with CIRCUITSCAPE on Linux platform

Gains in optimization speed when using CIRCUITSCAPE can be achieved in two ways when using Linux: 1.
Run the genetic algorithm in parallel (in the GA.prep function set parallel = X where ‘X’ is the number of
cores to use).
2. In the CS.prep function, set parallel = TRUE and specify cores to the number of cores for CIR-
CUITSCAPE to use when quantifying current flow across a surface.

Optimzation using costDistance (least cost paths) and commuteDistance (equiv-
alent to CS resistance distance)

The above optimization can also be done using functions in gdistance. This approach uses least cost paths or
random walk commute times between points. Optimization using gdistance can be substantially faster than
optimization with CIRCUITSCAPE. This optimization took 49 iterations and 4 minutes to complete when
run in parallel on 4 cores (parallel = 4 in GA.prep). To demonstrate the equivalence of CIRCUITSCAPE
and commuteDistance, the simulation below uses the CIRCUITSCAPE resistance distances generated above
as the response.

10

Import data
data(resistance_surfaces)
continuous <- resistance_surfaces[[2]]

data(samples)
sample.locales <- SpatialPoints(samples[,c(2,3)])

Set the random number seed to reproduce the results presented
Run in parallel on 4 cores
GA.inputs <- GA.prep(ASCII.dir=continuous,

Results.dir=write.dir,
select.trans = "M",
max.cat=500,
max.cont=500,
seed = 555,
parallel = 4)

gdist.inputs <- gdist.prep(length(sample.locales),
samples = sample.locales,
response = CS.response,
method = 'commuteDistance') ## Optimize using commute distance

Run optimization
SS_RESULTS.gdist <- SS_optim(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs)

Now compare the results from optimization with CIRCUITSCAPE and optimization with commuteDistance

SS_table <- data.frame(c("Monomolecular", 2.0, 275),
t(SS_RESULTS$ContinuousResults[c(9:11)]),
t(SS_RESULTS.gdist$ContinuousResults[c(9:11)]))
colnames(SS_table) <- c("Truth", "CS.Optimized", "commuteDist.Optimized")

SS_table
Truth CS.Optimized commuteDist.Optimized

Equation Monomolecular Monomolecular Monomolecular
shape 2 1.999999 1.999504
max 275 274.9982 277.0668

To view the response surface for the Monomolecular optimization of this surface, you can run Grid.Search.
This function is only relevant for single continuous surfaces.
Grid.Results <- Grid.Search(shape = seq(1, 3, by = 0.025),

max = seq(125, 425, by = 50),
transformation = "Monomolecular",
Resistance = continuous,
gdist.inputs = gdist.inputs,
GA.inputs = GA.inputs)

11

You can change the color scheme and color breaks by manually recreating the response surface from the
generated data [default = topo.colors(20)]
filled.contour(Grid.Results$Plot.data,

col = rainbow(14),
xlab = "Shape parameter",
ylab = "Maximum value parameter")

12

Note that actual response surfaces tend to be slightly flatter, and the maximum value for a single surface
is more difficult to identify precisely. If you were to add some random noise to the CS.response, the single
surface optimization generally would do a good job of recovering the transformation and shape parameters,
but the true maximum value may remain elusive. Occasionally the algorithm will get ‘stuck’ trying to
optimize on an incorrect transformation. If this happens, rerun the optimization. Of course, you may not
know that a surface wasn’t correctly optimized when using real data. For this reason, it is good practice to
run all optimizations at least twice to confirm parameter estimates.

Simultaneous optimization of multiple surfaces

First, make a new directory to write ASCII files, CIRCUITSCAPE batch files, and results.
if("ResistanceGA_Examples"%in%dir("C:/")==FALSE)

dir.create(file.path("C:/", "ResistanceGA_Examples"))

Create a subdirectory for the second example
dir.create(file.path("C:/ResistanceGA_Examples/","MultipleSurfaces"))

Directory to write .asc files and results
write.dir <- "C:/ResistanceGA_Examples/MultipleSurfaces/"

Extract other resistance surfaces from the ‘resistance_surfaces’ raster stack
data(resistance_surfaces)
data(samples)
sample.locales <- SpatialPoints(samples[,c(2,3)])

13

Visualize each surface:
plot(resistance_surfaces[[1]],main = resistance_surfaces[[1]]@data@names)
plot(sample.locales, pch=16, col="blue", add=TRUE)

0 5 10 15 20 25

0
5

10
15

20
25

categorical

0.0

0.5

1.0

1.5

2.0

plot(resistance_surfaces[[2]],main = resistance_surfaces[[2]]@data@names)
plot(sample.locales, pch=16, col="blue", add=TRUE)

14

0 5 10 15 20 25

0
5

10
15

20
25

continuous

7
8
9
10
11
12
13

plot(resistance_surfaces[[3]],main = resistance_surfaces[[3]]@data@names)
plot(sample.locales, pch=16, col="blue", add=TRUE)

0 5 10 15 20 25

0
5

10
15

20
25

feature

0.0
0.2
0.4
0.6
0.8
1.0

Create a raster stack and run the GA.prep function (needed to combine surfaces). In this example, the genetic
algorithm will seek to maximize the log likelihood of the fitted model (method = "LL").

15

Note that the `resistance_surfaces` is already a RasterStack object.
The code below for demonstration of how to make a stack.
r.stack <- stack(resistance_surfaces$categorical,

resistance_surfaces$continuous,
resistance_surfaces$feature)

GA.inputs <- GA.prep(ASCII.dir = r.stack,
Results.dir = write.dir,
method = "LL",
max.cat = 500,
max.cont = 500,
seed = 555,
parallel = 4)

gdist.inputs <- gdist.prep(length(sample.locales),
samples = sample.locales,
method = 'commuteDistance') # Optimize using commute distance

Transform, reclassify, and combine the three resistance surfaces together. Use an “Inverse-Reverse Monomolec-
ular” transformation of the continuous surface. Visualize this transformation using Plot.trans. The first
value of PARM refers to the shape parameter, and the second value refers to the maximum value parameter.
Look in the help file for Plot.trans for transformation names/numbers.
plot.t <- Plot.trans(PARM = c(3.5, 150),

Resistance = continuous,
transformation = "Inverse-Reverse Monomolecular")

Combine raster surfaces together using Combine_Surfaces. Note that the .asc files are read in alphabetically
(if stored in a directory), or else imported in the order they occur in the raster stack. You can check the

16

order of surfaces by inspecting GA.inputs$layer.names. First, define the parameters that will be passed to
Combine_Surfaces.
PARM <- c(1, 250, 75, 1, 3.5, 150, 1, 350)

PARM<- c(1, # First feature of categorical
250, # Second feature of categorical
75, # Third feature of categorical
1, # Transformation equation for continuous surface = Inverse-Reverse Monomolecular
3.5, # Shape parameter
150, # Scale parameter
1, # First feature of feature surface
350) # Second feature of feature surface

Combine resistance surfaces
Resist <- Combine_Surfaces(PARM = PARM,

gdist.inputs = gdist.inputs,
GA.inputs = GA.inputs,
out = NULL,
rescale = TRUE)

View combined surface
plot(Resist, main = "scaled composite resistance")

Generate new gdist response surface by using Run_gdistance and run gdsit.prep to add response
Create the true resistance/response surface
gdist.response <- Run_gdistance(gdist.inputs = gdist.inputs,

r = Resist)

17

gdist.inputs <- gdist.prep(n.Pops = length(sample.locales),
samples = sample.locales,
response = as.vector(gdist.response),
method = 'commuteDistance')

Run MS_optim. Running this multisurface example with the default settings took 215 iterations and ~42
minutes to complete on a computer with an Intel i7 3.6 GHz processor.
Multi.Surface_optim <- MS_optim(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs)

What the MS_optim function does:
* Read all .asc files that are in the specified ASCII.dir (if using CIRCUITSCAPE), makes a raster stack,
and determines whether each is a categorical or continuous surface. A surface is considered categorical if it
contains 15 or fewer unique values. * Transformation and resistance values are chosen for each surface, all
surfaces are added together, and chosen objective function is obtained from the mixed effects model.
* Several summary outputs are generated
* In the ‘Results’ directory (i.e. Writedir), a final optimized resistance .asc file has been made (the name is a
combination of the layers optimized, separated by “.”), along with the CIRCUITSCAPE results (.out files)
OR gdistance results.
* ‘Multisurface_Optim_Summary.txt’ provides a text summary of the model parameters and results of the
multisurface optimization
* A .csv file with the fitted MLPE model coefficients * A ‘Percent_Contribution.csv’ file is generated, reporting
the mean and 95% CI of the contribution of each surface to the final composite resistance surface
* In the ‘Plots’ directory there is a 4-panel figure with different model diagnostic plots generated from the
fitted mixed effects model of each optimized resistance surface.
* The GA object from the optimization is returned and can be further explored.

The multisurface optimization procedure has done a pretty good job of recovering the relative data generating
values. You’ll notice that we have not exactly recovered the values, but that the relative relationship among
surfaces is preserved (see below).
Summary.table <- data.frame(PARM,round(t(Multi.Surface_optim$GA.summary@solution),2))
colnames(Summary.table)<-c("Truth", "Optimized")
row.names(Summary.table)<-c("Category1", "Category2", "Category3",

"Transformation", "Shape", "Max",
"Feature1", "Feature2")

Summary.table
Truth Optimized
Category1 1.0 1.00
Category2 250.0 233.10
Category3 75.0 69.97
Transformation 1.0 1.50
Shape 3.5 3.45
Max 150.0 140.38
Feature1 1.0 1.00
Feature2 350.0 326.35

If we rescale both the true and optimized resistance surfaces to have a minimum value of 1, we see that
the surfaces are identical. The values for the 3-class categorical surface are the first three values listed,
the continuous surface values = 4–6 , and the feature surface values = 7–8. Note that the first value for
continuous surfaces identifies the transformation used (the fourth value, here), and is always rounded down (1
= Inverse-Reverse Monomolecular). Visualize and test the equivalence of simulated and optimized resistance
surfaces:

18

Make combined, optimized resistance surface.
optim.resist <- Combine_Surfaces(PARM = Multi.Surface_optim$GA.summary@solution,

gdist.inputs = gdist.inputs,
GA.inputs = GA.inputs,
rescale = TRUE)

ms.stack <- stack(Resist, optim.resist)
names(ms.stack) <- c("Truth", "Optimized")
plot(ms.stack)

Correlation between the two surfaces
pairs(ms.stack)

19

If you want to create a CIRCUITSCAPE current surface from either the true or optimized surfaces, this can be
done by setting CurrentMap = TRUE and output = "raster" in Run_CS.
Note: You must run `CS.prep` to generate the CS.inputs object for doing this.
CS.inputs <- CS.prep(n.Pops = length(sample.locales),

response = gdist.response,
CS_Point.File = paste0(write.dir,"samples.txt"),
CS.program = CS.program)

Resist.true <- Run_CS(CS.inputs = CS.inputs,
GA.inputs = GA.inputs,
r = Resist,
CurrentMap = TRUE,
output = "raster")

20

Resist.opt <- Run_CS(CS.inputs = CS.inputs,
GA.inputs = GA.inputs,
r = optim.resist,
CurrentMap = TRUE,
output = "raster")

We can confirm that, like the resistance surfaces above,
the CIRCUITSCAPE current maps are also correlated
cs.stack <- stack(Resist.true, Resist.opt)
names(cs.stack) <- c("Truth", "Optimized")
pairs(cs.stack)

The optimization can converge on a highly correlated solution, but one that results in relative resistance
values that are identical to those of the simulated data. This is important to understand, and interpretation

21

of resistance values should be made with this fact in mind.

Optimization of a smoothing parameter

Scale is a central theme in landscape ecology, however it seems to be rarely or only indirectly addressed in
landscape genetics studies. One way to assess ‘scale’ is to apply a kernel smoothing function to a continuous
surface, or to a binary categorical surface. As of version 3.0-4, it is possible to set scale = TRUE in the
GA.prep function. Doing so will apply a Gaussian kernel smoothing function to your resistance surface prior
to applying a transformation. The sigma parameter is the standard deviation of the Gaussian kernel, and is
measured in raster pixels (not map units).
data(resistance_surfaces)
cat <- resistance_surfaces[[1]]
cat[cat < 2] <- 0

Make categorical surface binary
cat[cat == 2] <- 1

Smooth and visualize
The `SCALE` parameter re-scales the surface to 0-10
cat.smooth <- k.smooth(raster = cat,

sigma = 1,
SCALE = TRUE)

par(mfrow = c(1,2))
plot(cat, main = "Original")
plot(cat.smooth, main = "Smoothed, sigma = 1")
par(mfrow = c(1,1))

22

Run optimization to determine the transformation and smoothing parameters.
data(samples)
sample.locales <- SpatialPoints(samples[,c(2,3)])

Set the random number seed to reproduce the results presented
Run in parallel on 4 cores
NOTE: `scale = TRUE` to indicate optimization of scaling/smoothing parameter
GA.inputs <- GA.prep(ASCII.dir = cat,

Results.dir = write.dir,
select.trans = "M",
scale = TRUE,
max.cat = 500,
max.cont = 500,
seed = 321,
run = 35,
parallel = 4)

Optimize using commute distance
gdist.inputs <- gdist.prep(n.Pops = length(sample.locales),

samples = sample.locales,
method = 'commuteDistance')

23

Transform resistance surface
r.tran_smooth <- Resistance.tran(transformation = "Monomolecular",

shape = 2,
max = 275,
r = cat.smooth)

Create the true resistance/response surface
gdist.response <- Run_gdistance(gdist.inputs = gdist.inputs,

r = r.tran_smooth)

Rerun `gdist.prep` to include response
gdist.inputs <- gdist.prep(n.Pops = length(sample.locales),

response = as.vector(gdist.response),
samples = sample.locales,
method = 'commuteDistance')

Run optimization: NOTE use of `SS_optim.scale` to optimize the smoothing parameter
SS_RESULTS.gdist_scale <- SS_optim.scale(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs)

Assess optimized against truth

SS_table <- data.frame(c("Monomolecular", 2.0, 275, 1),
t(SS_RESULTS.gdist_scale$ContinuousResults[c(9:12)]))
colnames(SS_table) <- c("Truth", "commuteDist.Optimized")

SS_table
Truth commuteDist.Optimized
Equation Monomolecular Monomolecular
shape 2 2.10675
max 275 313.7279
scale 1 0.9916279

Not too bad! As previously mentioned, the maximum value parameter seems to be the hardest to optimize
precisely. Note that optimization with a scaling parameter can be done with single surfaces or with a
multi-surface composite. However, make sure that only continuous or binary surfaces are included.

Example Analysis

Below is an example analysis using the three raster surfaces and sample locations provided with ResistanceGA.
The ‘true’ data generating surface in this example will be a combination of the categorical and transformed
continuous surface. The feature surface will have no effect on the pairwise distances. This example will show
how ResistanceGA can (1) be used for model selection; (2) determine the relative influence of each resistance
surface within a composite or multisurface analysis. A full ‘analysis’ is presented below. Note that for the
first time in the simulation of data, ‘noise’ is being added to make it more akin to empirical genetic data.
data(samples)
data("resistance_surfaces")

Create a spatial points object
sample.locales <- SpatialPoints(samples[, c(2, 3)])

Run `gdist.prep` & GA.prep
gdist.inputs <- gdist.prep(n.Pops = length(sample.locales),

24

samples = sample.locales,
method = 'commuteDistance')

This will be used again later
Note: to speed up the analysis, only Monomolecular tranformations will be assessed
GA.inputs_NoFeature <- GA.prep(method = "LL",

ASCII.dir = resistance_surfaces[[-3]],
Results.dir = "C:/ResistanceGA_Examples/run2/",
max.cat = 500,
max.cont = 500,
select.trans = list(NA,

"M"),
seed = 123,
parallel = 6)

The 'true' resistance surface will be the composite surface
Combine resistance surfaces, omitting the feature surface
Use an Inverse-Reverse Monomolecular transformation of the continuous surface
Inverse-Reverse Monomolecular = 1
PARM <- c(1, 250, 100, 1, 1.5, 150)

Setting `p.contribution = TRUE` to see how each surface
contributes to the total resistance of the composite surface
This is the 'true' resistance surface that the example 'response'
data were generated from
Resist <- Combine_Surfaces(PARM = PARM,

gdist.inputs = gdist.inputs,
GA.inputs = GA.inputs_NoFeature,
out = NULL,
rescale = TRUE,
p.contribution = TRUE)

Assess contribution of each surface
Resist$percent.contribution

surface mean l95 u95
1 categorical 0.7486327 0.043705035 0.9919852
2 continuous 0.2513673 0.008014751 0.9562950

Here, the categorical surface is responsible for ~62% of the total landscape resistance, while the continuous
surface is responsible for ~38%.
Create a subdirectory for results
dir.create(file.path("C:/ResistanceGA_Examples/","run1"))
dir.create(file.path("C:/ResistanceGA_Examples/","run2"))

Turn response data into vector
gd.true <- Run_gdistance(gdist.inputs = gdist.inputs,

r = Resist$combined.surface)

gd.true <- as.vector(gd.true)

Add some noise to response
set.seed(321)
gd.response <- gd.true + rnorm(length(gd.true), 0, 9)

25

plot(gd.response ~ gd.true)
ecodist::mantel(gd.response ~ gd.true) # Mantel r = 0.67

Correlation with distance
ecodist::mantel(gd.response ~ as.vector(dist(samples[, c(2, 3)]))) # Mantel r = 0.26
plot(gd.response ~ as.vector(dist(samples[, c(2, 3)])), xlab = "Euclidean distance")

26

Re-run `gdist.prep` function
gdist.inputs <- gdist.prep(n.Pops = length(sample.locales),

response = gd.response,
samples = sample.locales)

Re-run GA.prep to include all surfaces
Note: to speed up the analysis, only Monomolecular tranformations will be assessed

GA.inputs_All <- GA.prep(method = "LL",
ASCII.dir = resistance_surfaces,
Results.dir = "C:/ResistanceGA_Examples/run1/",
max.cat = 500,
max.cont = 500,
select.trans = list(NA,

"M",
NA),

seed = 123,
parallel = 6)

First run all single surfaces, Multi-surface is response variable
SS_RESULTS.gdist <- SS_optim(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs_All)

Run `MS_optim` with all surfaces
Multi.Surface_optim.gd <- MS_optim(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs_All)

27

Run `MS_optim` with without Feature surface
Multi.Surface_optim.gd2 <- MS_optim(gdist.inputs = gdist.inputs,

GA.inputs = GA.inputs_NoFeature)

What are the Percent contributions of individual surfaces to the combined surface?
Multi.Surface_optim.gd$percent.contribution

Multi.Surface_optim.gd2$percent.contribution

> Multi.Surface_optim.gd$percent.contribution
surface mean l95 u95

1 categorical 0.7010857 0.020919088 0.9798840
2 continuous 0.2632950 0.017292284 0.9468672
3 feature 0.0356193 0.002216987 0.1878875
>
> Multi.Surface_optim.gd2$percent.contribution

surface mean l95 u95
1 categorical 0.7174886 0.03268185 0.9841884
2 continuous 0.2825114 0.01581160 0.9673181

We can see that the feature surface has a minimal contribution to the total resistance, and that the mean
contributions of the categorical and continuous surfaces mirror the ‘true’ contributions (categorical = 75%,
continuous = 25%).

Bootstrap Analysis

It is often the case that there is weak or ambiguous support for a single best resistance surface (i.e. similar
AIC scores), as can be seen in the AIC table below. Based strictly on AIC or marginal R2, there really is no
difference between the multisurface optimization with and without the feature surface included. If we account
for the additional parameters (k) present when including the feature surface, AICc does pretty clearly suggest
that the composite surface without the feature is best supported.

Surface obj.func_LL k AIC AICc R2m R2c LL
categorical.continuous -1081.73 6 2171.46 2180.12 0.46 0.46 -1081.73
categorical -1086.49 4 2180.98 2182.98 0.44 0.44 -1086.49
categorical.continuous.feature -1081.44 8 2170.88 2187.88 0.46 0.46 -1081.44
Distance -1114.83 2 2237.66 2234.20 0.16 0.38 -1114.83
feature -1114.82 3 2237.63 2236.78 0.15 0.37 -1114.82
continuous -1114.47 4 2236.93 2238.93 0.16 0.37 -1114.47
Null -1139.25 1 2284.50 2280.67 0.00 0.20 -1139.25

Another approach that may lead to additional insight beyond the AIC(c) values generated during optimization
is a bootstrap analysis using the Resist.boot function. This approach will assess the relative support for
each optimized resistance surface through a ’pseudo’bootstrap where the sample locations/individuals as
well as the resistance distance matrices are sub-sampled at each bootstrap iteration (without replacement),
and the MLPE model is refit and the AIC scores calculated. Resistance surfaces are NOT re-optimized
during this process. This analysis will assess the robustness of the optimized resistance surface given different
combinations of samples. If the observed patterns in the resistance-genetics relationship are driven by one or
a few sample locations, this analysis may reveal this.
Extract relevant components from optimization outputs
Make a list of cost/resistance distance matrices
mat.list <- c(SS_RESULTS.gdist$cd,

Multi.Surface_optim.gd$cd,

28

Multi.Surface_optim.gd2$cd)

k <- rbind(SS_RESULTS.gdist$k,
Multi.Surface_optim.gd$k,
Multi.Surface_optim.gd2$k)

Create square distance matrix for response for use with
the bootstrap function

response <- matrix(0, 25, 25)
response[lower.tri(response)] <- gd.response

Run bootstrap
(AIC.boot <- Resist.boot(mod.names = names(mat.list),

dist.mat = mat.list,
n.parameters = k[,2],
sample.prop = 0.75,
iters = 1000,
obs = 25,
genetic.mat = response

)
)

surface avg.R2m avg.weight avg.rank n Percent.top k
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 categorical.continuous 0.4537753 4.674643e-01 1.436 569 56.9 6
2 categorical.continuous.feature 0.4545434 4.441112e-01 1.643 404 40.4 8
3 categorical 0.4374701 8.842401e-02 2.921 27 2.7 4
4 continuous 0.1533399 1.430606e-07 4.578 0 0.0 4
5 Distance 0.1512606 1.676945e-07 5.147 0 0.0 2
6 feature 0.1493708 1.716814e-07 5.275 0 0.0 3

You can see that there is decent support for the composite surface that (incorrectly) includes the feature
surface, but that in 57% of bootstrap samples, the composite without the feature surface was the top model.
The model selection clearly suggests, correctly, that the multisurface combination with the categorical and
continuous surface is the best. There was some ambiguity about whether the categorical.continuous composite
was an improvement over the categorical surface alone, but the bootstrap analysis suggests virtually no
support for the categorical surface. Further, if you assess the optimized values from this analysis (below),
you can see that each surface was parameterized fairly well. The optimized parameters do not perfectly
match the true data generating parameters, but overall this resulted in a nearly perfectly correlated surface
(r = 1.00). It is worth noting that the optimized surface resulted in a marginal R2 = 0.46, suggesting that
optimization with ‘noisy’ genetic data may not result in the highest R2 values, but that optimization can
nonetheless reliably determine the effects of the landscape on pairwise genetic distance.
Summary.table <- data.frame(PARM,round(t(Multi.Surface_optim.gd2$GA.summary@solution),2))
colnames(Summary.table)<-c("Truth", "Optimized")
row.names(Summary.table)<-c("Category1", "Category2", "Category3",

"Transformation", "Shape", "Max")

> Summary.table
Truth Optimized

Category1 1.0 1.00
Category2 250.0 347.56
Category3 100.0 123.80
Transformation 1.0 1.60

29

Shape 1.5 3.03
Max 150.0 83.75
opt.r <- raster("C:/ResistanceGA_Examples/run2/Results/categorical.continuous.asc")
r.stack <- stack(Resist$combined.surface, opt.r)
names(r.stack) <- c("Truth", "Optimized")

plot(r.stack)

pairs(r.stack)

30

Comments on multiple surface optimization:
* If the optimized resistance values are near the maximum value specified in GA.prep, it is recommended that
you increase the maximum value and rerun the optimization.
* If the optimization ends very quickly (e.g., <40 iterations), you may want to increase the probability
of mutation (pmutation) and/or the probability of crossover (pcrossover). These can be adjusted using
GA.prep. I have not extensively tested these settings to determine optimal values, but found that the current
defaults (pmutation = 0.125, pcrossover = 0.85) have generally worked quite well with simulated data
and produced reproducible estimates with real data. Alternatively, because this is a stochastic optimization,
just rerun the optimization (make sure you have not set a seed!)
* Any and all settings of the ga function can be adjusted or customized. The main change made from the
default setting for optimization of resistance surfaces was to use the “gareal_blxCrossover” method. This
greatly improved the search of parameter space.
* As mentioned above concerning single surface optimization: this is a stochastic optimization process
and optimized values will likely differ from run to run. Despite the time involved, it is advised to run all
optimizations at least twice to confirm parameter estimates/relative relationship among resistance surfaces.
* While there is no established framework for how optimization of resistances surface can or should be done,
below is a flowchart of how an analysis might proceed:

31

Summary

Hopefully this vignette/tutorial has demonstrated the functions present in this package and how they can be
used together to optimize resistance surfaces in isolation or in combination. These methods require no a priori
assumptions by the researcher. Optimization is conducted solely on the genetic distance data provided. The
goal of this package is to make these methods accessible and useful to others. Development and advancement

32

will continue as long as there is interest and there remains a need. Please contact me (bill.peterman@gmail.com)
if you encounter issues with any of these functions, need assistance with interpretation, or would like other
features added.

Acknowledgements

A huge thanks to Grant Connette for many discussions related to development and implementation of these
methods!

33

mailto:bill.peterman@gmail.com

	ResistanceGA
	An R Package for Optimizing Resistance Surfaces using Genetic Algorithms
	Background

	Thoughts on Optimization
	Setup
	Install necessary software and packages
	Running on Linux
	Installation

	Demonstrations
	Continuous surface transformations

	Example Function Use
	Single surface optimization

	Prepare data for optimization
	Minimum code for running ResistanceGA

	Optimization with CIRCUITSCAPE on Linux platform
	Optimzation using costDistance (least cost paths) and commuteDistance (equivalent to CS resistance distance)
	Simultaneous optimization of multiple surfaces

	Optimization of a smoothing parameter
	Example Analysis
	Bootstrap Analysis
	Summary
	Acknowledgements

