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Abstract

Landscape genetics has seen tremendous advances since its introduction, but parame-

terization and optimization of resistance surfaces still poses significant challenges.

Despite increased availability and resolution of spatial data, few studies have inte-

grated empirical data to directly represent ecological processes as genetic resistance

surfaces. In our study, we determine the landscape and ecological factors affecting

gene flow in the western slimy salamander (Plethodon albagula). We used field data to

derive resistance surfaces representing salamander abundance and rate of water loss

through combinations of canopy cover, topographic wetness, topographic position,

solar exposure and distance from ravine. These ecologically explicit composite surfaces

directly represent an ecological process or physiological limitation of our organism.

Using generalized linear mixed-effects models, we optimized resistance surfaces using

a nonlinear optimization algorithm to minimize model AIC. We found clear support

for the resistance surface representing the rate of water loss experienced by adult sala-

manders in the summer. Resistance was lowest at intermediate levels of water loss and

higher when the rate of water loss was predicted to be low or high. This pattern may

arise from the compensatory movement behaviour of salamanders through suboptimal

habitat, but also reflects the physiological limitations of salamanders and their sensi-

tivity to extreme environmental conditions. Our study demonstrates that composite

representations of ecologically explicit processes can provide novel insight and can

better explain genetic differentiation than ecologically implicit landscape resistance

surfaces. Additionally, our study underscores the fact that spatial estimates of habitat

suitability or abundance may not serve as adequate proxies for describing gene flow,

as predicted abundance was a poor predictor of genetic differentiation.
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Introduction

Since its formal introduction, landscape genetics has

sought to combine landscape ecology, population genet-

ics and spatial statistics (Manel et al. 2003; Manel &

Holderegger 2013). Significant advances have been

made in analytical methods and frameworks (e.g. Cush-

man et al. 2006; Murphy et al. 2008; Dyer et al. 2010;

Van Strien et al. 2012), simulation environments

(Landguth & Cushman 2009; Rebaudo et al. 2013) and

methods to optimize resistance surfaces (Wang et al.

2009; Shirk et al. 2010; Graves et al. 2013). Despite these

advances, there is still a paucity of studies utilizing eco-

logically explicit, empirically derived resistance surfaces

to test landscape genetics hypotheses (Spear et al. 2010).

Nearly all landscape genetic studies assess spatial fac-

tors that are believed to have an effect on the ecology

of their study species (e.g. temperature, moisture, land

cover), but these are generally indirect proxies for the
Correspondence: William E. Peterman, Fax: (217) 265-4678;

E-mail: bill.peterman@gmail.com

© 2014 John Wiley & Sons Ltd

Molecular Ecology (2014) 23, 2402–2413 doi: 10.1111/mec.12747



actual ecological processes underlying gene flow. The

development of spatial surfaces that explicitly measure

ecological processes (e.g. rate of dispersal, foraging

time, rate of reproduction, survival probability) has the

potential to offer novel insights into functional connec-

tivity and a deeper understanding of specifically how

the landscape affects gene flow (Michels et al. 2001; Ste-

vens et al. 2006b). Moving towards greater integration

of ecological data to test hypotheses of landscape resis-

tance is particularly pertinent given the evidence that

expert opinion rarely performs satisfactorily (Shirk et al.

2010; Charney 2012) and that resistance surfaces are

sensitive to incorrect parameterizations (Beier et al.

2009; Rayfield et al. 2010).

Given the increasing availability and resolution of

spatial data, and advances in methods for making spa-

tial projections of species abundance or occupancy (e.g.

Royle et al. 2007; Fiske & Chandler 2011; Sillett et al.

2012), there is great potential for researchers to develop

resistance surfaces that meaningfully relate to the ecol-

ogy of their study organism. Methods to parameterize

ecological resistance surfaces have been reviewed by

Spear et al. (2010) and can include telemetry or tracking

data (e.g. Driezen et al. 2007), presence-absence data

(e.g. Wang et al. 2008) or movement studies (e.g. Ste-

vens et al. 2006b). The majority of these studies seek to

identify habitat features that are conducive to species

occurrence or to determine the relative effects of habitat

features on movement; the resulting resistance surfaces

generally represent a single landscape feature and

assign resistance values to land cover types. However,

novel composite resistance surfaces have been created

by combining multiple landscape features through the

use of habitat suitability models (e.g. Wang et al. 2008),

resource selection functions (e.g. Chetkiewicz & Boyce

2009) or multiple regression on distance matrices

(Garroway et al. 2011).

Regardless of how resistance surfaces are developed,

an important assumption is that these surfaces contrib-

ute to the processes underlying genetic differentiation.

Spatial variation in local population dynamics, survival,

reproduction and successful dispersal measured over

several generations all contribute to genetic differentia-

tion between populations. Therefore, ecological surfaces

derived from empirical data that describe a single com-

ponent of an organism’s ecology (e.g. abundance, habi-

tat use) may not adequately describe the long-term,

multivariate processes driving gene flow. There are also

potential pitfalls to using ecological measures that do

not directly measure movement, which is a complex

and highly variable individual trait (Baguette & Van

Dyck 2007). Compensatory movement, wherein an

organism modifies the directionality and speed of its

movement depending upon the local landscape, may

lead to unexpected patterns in dispersal and connectiv-

ity in taxa ranging from insects, birds, amphibians,

reptiles and small mammals (reviewed by Knowlton &

Graham 2010). For example, compensatory movement

may result in decreased movement through highly suit-

able habitat and accelerated movement through subop-

timal or low quality habitat (e.g. Goodwin & Fahrig

2002), resulting in a negative relationship between habi-

tat suitability and resistance.

Another important consideration when developing

spatial resistances surfaces is that of scale; the spatial

extent and resolution of the landscape must match the

biology of the study organism. Small, terrestrial animals

are often closely associated with temperature and mois-

ture microclimates (Baur & Baur 1995; Peterman & Sem-

litsch 2013), which may lead to differential survival,

movement and abundance across the landscape. A close

dependence on local microclimate may make these taxa

particularly relevant for investigating the effects of fine-

scale ecological processes on gene flow. Unique among

terrestrial vertebrates, plethodontid salamanders are

lungless and respire cutaneously (Whitford & Hutchi-

son 1967). As a result, their skin must remain moist and

permeable, imposing physiological and ecological con-

straints. These salamanders exhibit minimal dispersal

(Liebgold et al. 2011) and can show significant genetic

differentiation at distances of 200 m within continuous

forest habitat (Cabe et al. 2007). These life history char-

acteristics suggest that genetic differentiation is likely to

occur over fine spatial scales and in relation to local

habitat features.

We conducted a fine-scale landscape genetic assess-

ment of a terrestrial woodland salamander, Plethodon alb-

agula (western slimy salamander), with specific emphasis

on building upon empirical ecological data acquired

through field surveys and experimentation. Plethodon alb-

agula are large plethodontid salamanders of the P. gluti-

nosus species complex (Highton 1989) that live in forested

habitats throughout the Ozark and Ouachita Mountains

of Missouri, Arkansas, eastern Oklahoma and northeast-

ern Texas, USA. In Missouri, Peterman and Semlitsch

(2013) found that abundance of P. albagula is greatest in

ravines with dense canopy cover, high moisture and low

solar exposure. As a potential mechanism shaping pat-

terns of abundance on the landscape, Peterman (2013)

estimated rates of water loss across the landscape finding

that water loss was most affected by topographic posi-

tion, solar exposure, canopy cover, maximum daily tem-

perature and time since rain. Further, the resulting water

loss landscape was highly correlated (r = 0.68) with pre-

dicted abundance on the landscape.

Although Peterman (2013) found water loss to be a

significant predictor of the spatial distribution of

abundance, the effect of water loss as a physiological
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mechanism affecting functional connectivity across the

landscape remains unknown. Using our observations of

the landscape features affecting abundance and water

loss, as well as the spatial representations of these eco-

logical processes, we designed this study to determine

the factors affecting gene flow in P. albagula across the

landscape. We hypothesized that (i) fine-scale popula-

tion genetic differentiation would be evident for P. alb-

agula; (ii) gene flow would be best predicted by

resistance surfaces directly representing local popula-

tion dynamics (abundance; Peterman & Semlitsch 2013)

and physiology (rate of water loss; Feder & Londos

1984; Peterman 2013), which can affect the amount of

time a salamander can be surface active, foraging, dis-

persing or searching for a mate; and (iii) gene flow

would be greatest through landscape and ecological fea-

tures conducive to salamander reproduction and sur-

vival (i.e. ravines, high moisture, low solar exposure,

high canopy, low maximum temperature).

Methods

Study site and species

Our study took place in east–central Missouri within the

River Hills Ecoregion (Chapman et al. 2002) at Daniel

Boone Conservation Area (DBCA; 38.78° N, 91.39° W;

157–280 m a.s.l.; Fig. 1a). This physiographic region and

conservation area border the Missouri River and are char-

acterized by forested ridges and valleys with slopes that

are frequently covered by exposed rock or rock outcrops.

DBCA encompasses 1424.5 ha of mature (80–100 years

old) second-growth forest (Semlitsch et al. 2008).

Population sampling

Tissue was collected from 10 to 25 P. albagula at each of

22 sample locations by taking 0.5 cm of tail tissue,

which was stored in 95% EtOH at �20 °C until DNA

extraction. At each location, samples were collected

within a 25-m2 area. When possible, adult salamanders

were preferentially chosen over juvenile or hatchling

salamanders in an attempt to minimize the number of

sibling pairs captured. The centre of each sample loca-

tion was marked with a handheld GPS (Garmin 60sc)

with repeated measurements until the estimated preci-

sion was ≤3 m. The minimum and maximum distances

between sample locations were 75 and 3978 m, respec-

tively (mean = 1725 � 947 m).

Population genetic analyses

DNA was extracted using the Wizard SV 96 Genomic

DNA Purification System (Promega, Madison, WI,

USA) according to the manufacturer’s protocols.

Twenty-four tetra- and penta-nucleotide microsatellite

loci were amplified using PCR; primers were fluores-

cently labelled and arranged into two multiplex reac-

tions as described in Spatola et al. (2013). Amplification

products were sized on an ABI 3730xl DNA Analyzer

(Applied Biosystems, Foster City, CA, USA) using Liz

600 size standard at the University of Missouri DNA

Core Facility, and results were scored using GENE-

MARKER (v.1.97; Softgenetics, State College, PA, USA).

Before proceeding with analyses, we tested for, and

removed, full-siblings from our data set using COLONY

(Jones & Wang 2010). Following removal of siblings, we

had 360 individuals in our data set (mean = 16.36/site;

Table 1).

Genepop 4.2 (Raymond & Rousset 1995; Rousset

2008) was used to test whether loci conformed to

expected heterozygosity values under Hardy–Weinberg

equilibrium (HWE) and to test for linkage disequilib-

rium among pairs of loci. Both tests were conducted

using 250 batches with 2500 iterations following a burn-

in of 2500. We tested for presence of null alleles using

Micro-Checker (Van Oosterhout et al. 2004). Rarefied

allelic richness and private alleles were calculated using

HP-RARE (Kalinowski 2005). Observed and expected

heterozygosity as well as FST, and chord distances (DC)

were calculated using GenoDive (Meirmans & Van

Tienderen 2004), Jost’s D (Dest, corrected for sample

size; Jost 2008) was calculated using DEMEtics (Gerlach

et al. 2010) in the R statistical environment (v3.0.2; R

Core Team 2013), and the proportion of shared alleles

(DPS; Bowcock et al. 1994) was calculated using microsat

(�ln (proportion shared)). We chose to assess DPS and

DC as alternative metrics to FST because they rely on

fewer assumptions and, as such, may provide less

biased estimates of differentiation. Dest was included as

a bias-corrected differentiation metric to account for

variable sample size.

Landscape resistance surfaces

Eleven continuous landscape resistance surfaces, which

were hypothesized to affect survival or movement of

P. albagula, were created in ArcGIS 9.3 (ESRI, Redlands,

CA, USA) (Fig. 1b–i). Topographic wetness index (TWI;

Fig. 1b), topographic position index (TPI; Fig. 1c), dis-

tance from ravine (Fig. 1d) and potential relative radia-

tion (PRR; Fig. 1e) were all derived from 1/9 arc

second Nation Elevation Dataset (~3-m resolution;

http://seamless.usgs.gov/products/9arc.php), while

normalized difference vegetation index (NDVI = canopy

cover; Fig. 1f) was calculated from Landsat 7 satellite

imagery and had an original resolution of 30 m. Addi-

tionally, maximum temperature on the landscape
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(a)

(b)(c)(d)

(e)

(f)

(g) (h) (i)

Fig. 1 Map of the Daniel Boone Conservation Area in Warren County, MO, USA. The 22 sample locations, hillshade relief and con-

servation area boundaries (thin black line) are depicted in panel (a). (b) topographic wetness (TWI), (c) topographic position index

(TPI), (d) distance from ravine, (e) potential relative radiation (PRR), (f) canopy cover (NDVI), (g) maximum surface temperature, (h)

predicted abundance and (i) estimated rate of water loss for adult P. albagula in the summer, respectively. Blue represents low, green

intermediate and red high values for each respective surface.
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surface (Fig. 1g) was estimated using a hierarchical

mixed-effects model as described by Fridley (2009) from

61 Thermochron iButton data loggers (Maxim) deployed

across our landscape (Peterman & Semlitsch 2013). The

maximum temperature surface is a composite surface

that incorporates all of the previously described resis-

tance surfaces to predict surface soil temperature at 3-m

resolution. We also included a predicted salamander

abundance surface (Fig. 1h), which was estimated from

a hierarchical binomial mixture model that incorporated

TPI, TWI, PRR and NDVI as independent variables (Pe-

terman & Semlitsch 2013; Appendix S1, Supporting

information). Finally, we included four different water

loss surfaces representing predicted rates of water loss

for adult and juvenile salamanders in both spring and

summer (adult summer water loss shown in Fig. 1i).

These surfaces were generated from linear mixed-effects

models that included different combinations of TPI,

PRR, NDVI and distance from ravine as independent

variables (Peterman 2013; Appendix S1, Supporting

information). We predicted that abundance, NDVI and

TWI would promote gene flow (i.e. higher values

would have lower resistance), while all other surfaces

would limit gene flow (i.e. higher values would have

increased resistance).

To modify resistance surfaces, we used the monomo-

lecular and Ricker functions as described in Bolker

(2008) as well as a rescaling function. Details of the

functions used and their implementation can be found

in Appendix S2 (Supporting information). Using these

three functions, a wide range of data transformations

can be realized, and nonlinear transformations can be

explored (Fig. 2). We chose to use the Ricker and mono-

molecular functions to transform resistance surfaces

because their shape and maximum values are dictated

by only two parameters (Appendix S2, Supporting

information). Previous studies have utilized a Gaussian

transformation to model a peaked response (Cushman

et al. 2006; Shirk et al. 2010; Graves et al. 2013), but this

requires optimization of three parameters. See Appen-

dix S2 (Supporting information) for the full equations

used for each transformation, as well as an example

transformation of a resistance surface.

Statistical modelling and optimization

We measured the resistance distance between sample

locations using CIRCUITSCAPE (v.4.0-Beta; McRae

2006). This approach assesses all possible pathways

between any two points and may better represent gene

flow that occurs over multiple generations (McRae

2006). For this analysis, we assessed connectivity based

on average resistances using an eight neighbour connec-

tion scheme. To make the Circuitscape analyses tracta-

ble, all resistance surfaces were resampled to a

resolution of 15 m. Previous research has shown infer-

ences to be robust to changes in the resolution of land-

scape surfaces (McRae & Beier 2007).

To evaluate the relative support for each resistance

surface, we fit linear mixed-effects models using the

maximum-likelihood population effects (MLPE) param-

eterization to account for the nonindependence of val-

ues within pairwise distance matrices (Clarke et al.

2002; Van Strien et al. 2012). Mixed-effects models were

fit by maximum likelihood using lme4 (Bates et al. 2013)

in the. Pairwise genetic distance (linearized FST, DC,

DPS, Dest) was used as the dependent variable, while

scaled and centred effective resistance between popula-

tions was the independent variable. Because distance is

implicitly incorporated into the effective resistance mea-

sure calculated by Circuitscape, Euclidean distance was

not included as an additional factor in our models.

Using AIC as our objective criteria to evaluate

model fit and optimize parameter values, we utilized a

two-step optimization procedure. First, we fit 17

Table 1 Population genetic summary statistics for 22 sample

sites in the Daniel Boone Conservation Area, MO, USA

Popu-

lation Northing Easting N HE HO AR AP

103p 4292372.86 640720.62 15 0.50 0.47 3.88 0

146p 4292226.41 640701.14 21 0.49 0.42 3.93 0.15

148p 4292152.06 640774.62 14 0.49 0.51 3.85 0.04

149p 4292134.41 640701.42 20 0.49 0.50 3.67 0.09

151p 4292093.46 640550.17 14 0.52 0.53 3.93 0.03

158p 4292894.26 639806.07 19 0.51 0.51 3.95 0.05

2R 4293194.32 638944.23 12 0.50 0.48 3.73 0.07

300p 4293291.61 638904.60 24 0.48 0.50 3.73 0.04

301p 4294348.96 639012.25 22 0.49 0.47 3.79 0.06

313p 4294294.32 638897.69 17 0.50 0.50 3.93 0.05

315p 4291542.88 637959.14 20 0.52 0.51 3.84 0.05

330p 4291785.98 637962.56 11 0.47 0.46 3.69 0

333p 4292449.62 638006.56 12 0.49 0.48 3.68 0.03

343p 4292672.86 640645.62 15 0.45 0.45 3.55 0.04

37R 4292597.86 639708.12 18 0.52 0.46 3.61 0.02

40R 4292522.85 640720.62 20 0.56 0.53 4.08 0.08

41R 4294131.57 638880.38 19 0.51 0.51 3.7 0.02

44p 4293694.71 640463.13 10 0.51 0.48 3.95 0.02

46p 4292049.02 640282.59 11 0.46 0.47 3.68 0.02

74p 4292022.60 640657.48 16 0.48 0.46 3.84 0.05

7R 4294549.24 640359.22 13 0.50 0.49 3.64 0.11

8R 4294768.24 640286.79 17 0.51 0.50 3.71 0.06

Avg. 16.36 0.50 0.49 3.79 0.05

Avg.: average; N: is the number of samples after removal of

full-siblings; HE: is expected heterozygosity; HO: is observed

heterozygosity, and AR and AP: are the mean rarefied allelic

richness and frequency of private alleles.
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models with the maximum value (b) fixed at 100 and

then varied the shape parameter (c) from 0.2 to 1 by

0.2 and from 1.75 to 10 by 1.75. The value of c that

minimized AIC among these 17 models was then used

as the starting value in the nonlinear minimization

algorithm (nlm function; Dennis & Schnabel 1983;

Schnabel et al. 1985). Nonlinear minimization uses a

Newton-type algorithm to search parameter space to

select the optimal parameter values that minimize the

objective criteria (AIC). We implemented this two-step

approach because preliminary analyses revealed the

presence of a linear trough in parameter space extend-

ing away from the optimal shape parameter (Appen-

dix S3, Supporting information). As such, our two-step

approach allowed us to conduct a restricted grid

search of parameter space to provide informed starting

values for optimization. For each of the eleven resis-

tance surfaces, we optimized the Ricker, inverse Rick-

er, monomolecular, inverse monomolecular, reverse

monomolecular and inverse-reverse monomolecular

equations (Fig. 2). Although we had a priori predic-

tions concerning the relationships of resistance surfaces

to gene flow, our optimization procedure made no a

priori assumptions about the direction or magnitude

of the relationship between each resistance surface and

genetic distance.

After each surface was optimized with each of the

six functions, we determined the function that mini-

mized AIC for each of the eleven resistance surfaces

and then ranked models and calculated the delta AIC

for the included models. To assess the robustness of

our model selection and optimization, we conducted a

bootstrap resampling of our data. Using the function

and parameter values that optimized each surface, we

randomly selected 17 of our 22 populations without

replacement and then fit the optimized model to these

selected populations. Following 10 000 iterations, we

determined the frequency that each surface was

selected as the top model as well as the average rank

of each model. Code to implement our optimization

procedure using Circuitscape, as well as model boot-

strapping, is provided in Appendix S4 (Supporting

information).

Results

Population genetic analyses

Three microsatellite loci were monomorphic (PLAL_791,

PG_RIH and PG_3XI), and PLAL_EIXNY had a high

error rate and evidence of null alleles. The remaining 20

loci had 2–27 alleles (mean = 8.20 � 5.76) across all

samples. All loci and populations conformed to HWE

expectations, and there was no evidence for linkage

between pairs of loci. Observed heterozygosity at each

sample location ranged from 0.42 to 0.53 (mean = 0.49;

Table 1). Pairwise estimates of FST ranged from 0 to

0.0529, DC ranged from 0.185 to 0.423, DPS ranged from

0.128 to 0.307 and Dest ranged from 0 to 0.093 (Tables

S1–S2, Supporting information).

(a)

(b)

(c)

Fig. 2 Example data transformations with the two-parameter

Ricker and monomolecular functions. Using a combination of

reflection over the x- and y-axes and rescaling, a diversity of

data transformations can be realized to optimize resistance sur-

faces. All examples have the maximum value parameter set to

100, and the shape parameter set to 2. See Appendix S2

(Supporting information) for details on these transformation

functions.
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Comparison of genetic and landscape distances

Optimization and model selection results were largely

congruent for each of the four genetic distances, with

the rate of water loss experienced by adult salamanders

in the summer being the best-supported resistance sur-

face (Tables 2 and S3, Supporting information). Using

FST and Dest, the summer water loss and maximum sur-

face soil temperature surfaces were more equally sup-

ported (Table S3, Supporting information). However,

models using DPS and DC as the response variable

resulted in strong support for the adult summer water

loss surface, with minimal support for any other resis-

tance surface. Because DPS is a genetic measure with

fewer assumptions than FST, we focus on the results

from DPS in the rest of the paper. The best-supported

functional form for the adult summer water loss surface

was the inverse Ricker function (Table 2). The linear

mixed-effects model fit the data well (Appendix S5,

Supporting information), and adult summer water loss

is a significant predictor of genetic distance in the gen-

eralized linear mixed-effects model (Appendix S6, Sup-

porting information). Further, the optimized adult

summer water loss surface was selected as the top

model 62% of the time and had an average model rank-

ing of 1.90 based on 10 000 bootstrap resamples

(Table 2). This optimized surface assigns high resistance

to regions of the landscape where the predicted rate of

water loss is low, with decreasing resistance as the rate

of water loss increases to 3.72%/h. Resistance then

increases as the rate of water loss increases beyond this

threshold (Appendix S7, Supporting information).

While rates of water loss observed on the landscape

ranged from 1.22 to 13.40%/h, only 6% of the landscape

had rates >3.72%/h. As such, there is a small fraction of

the landscape with high rates of water loss, but these

areas may impede movement of salamanders or affect

survival or recruitment.

For each of the eleven resistance surfaces, the func-

tion that optimized the surface was either the Ricker or

inverse Ricker (Table 2). We note that these functions

are highly flexible, and in instances where the Ricker

was the optimal model, the peak in resistance is

strongly positively skewed (Appendix S7, Supporting

information). This results in a negative exponential-like

decay over the majority of parameter space. Contrary to

our predictions, higher values of abundance, TWI and

NDVI corresponded with higher resistance, while high

values of all the other surfaces corresponded with low

resistance.

Discussion

We found clear support for the landscape resistance

surface that represented the rate of water loss in adult

salamanders during the summer. This surface directly

represents an important physiological process for sala-

manders that affects several key drivers of genetic dif-

ferentiation. Specifically, water loss will affect the

amount of time salamanders can be surface active

(Feder & Londos 1984), which has been shown to influ-

ence foraging, dispersal, survival and fecundity (Grover

1998; Milanovich et al. 2006). Unexpectedly, this resis-

tance surface, and all other resistance surfaces assessed,

affected gene flow contrary to our predictions. Previous

Table 2 Model selection results for linear mixed-effects models optimized on DPS. AIC is the Akaike information criterion, DAIC is

the difference in AIC between the best model and each competing model, and wi is the Akaike weight, representing the probability

that a model is the best in the model set. The average rank and top model frequency for each model was calculated based on 10 000

bootstrap iterations using a random resampling of 75% of the sampled populations. Adult summer water loss was the best-supported

model based on AIC, received the majority of the model weight, had the highest average model rank and was most frequently

ranked as the top model in 10 000 bootstrap iterations

Surface Equation AIC DAIC wi Avg rank Frequency top model

Ad summer water loss Inverse Ricker �1071.31 0.000 0.666 1.90 0.620

Jv summer water loss Inverse Ricker �1068.03 3.278 0.129 2.99 0.077

Max Temp Inverse Ricker �1066.55 4.757 0.062 4.65 0.075

Stream Dist Inverse Ricker �1065.92 5.389 0.045 5.07 0.053

Jv spring water loss Ricker �1065.28 6.031 0.033 4.68 0.050

Ad spring water loss Inverse Ricker �1064.95 6.360 0.028 5.03 0.104

Abundance Inverse Ricker �1062.98 8.325 0.010 7.48 0.000

TWI Inverse Ricker �1062.85 8.461 0.010 8.16 0.010

TPI Ricker �1062.52 8.785 0.008 8.10 0.008

PRR Ricker �1061.92 9.384 0.006 8.50 0.005

NDVI Inverse Ricker �1060.82 10.483 0.004 9.94 0.000

Euclidean distance NA �1056.91 14.397 0.000 11.80 0.000

Null NA �1050.50 20.806 0.000 12.71 0.000
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research has shown that abundance of salamanders is

significantly greater in cool, moist regions of the land-

scape where desiccation rates are the lowest (Peterman

2013; Peterman & Semlitsch 2013). Results from our cur-

rent study clearly demonstrate that genetic resistance

across most of the landscape decreases as the rate of

water loss increases. However, resistance does increase

again when rates of water loss exceed 3.72%/h (Appen-

dix S7, Supporting information).

Our finding that gene flow is relatively low through

seemingly favourable habitat might be explained by the

complex movement behaviour of salamanders. Pleth-

odontid salamanders are active on the ground surface

almost exclusively at night, and activity is greatest dur-

ing or immediately following rain (Petranka 1998).

Under these conditions, water loss may not be a limit-

ing factor for dispersing salamanders. However, if sala-

manders fail to completely traverse inhospitable habitat

in a single night, or if water loss rates are too high, they

must settle, potentially increasing their risk of mortality.

To minimize the need to settle in unfavourable habitat,

salamanders may exhibit different dispersal behaviours

depending upon local landscape features. Movement

ability and behaviour can be significantly affected by

landscape context (Goodwin & Fahrig 2002), and Sem-

litsch et al. (2012) found that the rate of movement and

straightness of movement paths increased when sala-

manders (P. metcalfi) were placed on roads or exposed

ground. Similar compensatory movement behaviours

have been experimentally observed in another terres-

trial salamander, Ensatina escholtzii, which increased

velocity and were less likely to settle when traversing

bare soil (Rosenberg et al. 1998). The experimental find-

ings of Semlitsch et al. (2012) and Rosenberg et al.

(1998) suggest that the motivation and subsequent pat-

tern of dispersal for salamanders can vary depending

upon the local landscape. Individuals inhabiting cool,

moist habitats may make more exploratory movements

and move only as far as necessary to establish a terri-

tory, while individuals in hot, dry habitats may make

more rapid and directed movements when environmen-

tal conditions permit. Moving directly and rapidly

through inhospitable habitats may be a general evolu-

tionary dispersal strategy that reduces mortality risk,

and exploratory movements within suitable habitat may

best maximize fitness (Knowlton & Graham 2010).

Despite the patterns of dispersal observed in this

study, we emphasize that our study focused on a small

region of continuously forested habitat, with only mini-

mal influence of anthropogenic alteration (gravel road,

Fig. 1a). However, the gravel road and other nonforest-

ed regions of our landscape generally had rates of

water loss that exceeded 3.72%/h, suggesting that these

features may limit salamander movement or increase

mortality (Appendix S7, Supporting information). If we

assume that salamanders are able to lose 10% of their

body water before seeking refuge to rehydrate (Feder &

Londos 1984), then surface activity in these nonforested

areas would be limited to <2.7 h a night. In an experi-

mental displacement study, Connette and Semlitsch

(2013a) found that salamanders never moved more than

15.5 m over a three-hour period. These findings suggest

that even small areas with high rates of water loss may

pose formidable challenges to dispersing salamanders.

Further, land uses such as logging, agriculture or

urbanization would undoubtedly increase rates of water

loss on the landscape, and the scale of such land uses

may alter dispersal and connectivity and result in dif-

ferent patterns of resistance than measured in our

study. Previous research at DBCA has found that abun-

dance and apparent recruitment of P. albagula is signifi-

cantly reduced in clear-cut logged habitats for up to

7 years (Hocking et al. 2013), and Connette and Sem-

litsch (2013b) found that populations of P. shermani in

North Carolina, USA, may take >100 years to fully

recover following logging. Because rates of water loss

will be increased following land uses such as logging,

larger-scale anthropogenic disturbances may have pro-

found impacts on local genetic diversity and affect the

level genetic differentiation.

Other genetic-based studies have also revealed unex-

pected movement patterns of animals. Keller and

Holderegger (2013) found that short-distance move-

ments of damselflies were confined to stream corridors,

but long-distance dispersal was best described by

straight line paths across agricultural matrix. A study of

Ambystoma californiense, a grassland-associated species,

found that dispersal costs were greatest through grass-

land habitat (Wang et al. 2009). Stevens et al. (2006b)

used behavioural experiments with natterjack toads

(Epidalea calamita) to parameterize alternate resistance

models that reflected relative resistance values of habi-

tat type (Stevens et al. 2004) and habitat boundary per-

meability (Stevens et al. 2006a). They determined that

habitat permeability was significantly correlated with

genetic distance, while speed of movement through

habitats was not. In our study, estimated abundance

was a poor predictor of genetic differentiation on the

landscape, and although summer water loss was the

best predictor of genetic differentiation, the optimized

surface had an unexpected relationship with genetic

distance. All of these examples highlight the potential

shortcomings of expert opinion and even empirical

observation to inferring factors relevant to multigenera-

tional processes affecting gene flow.

Our optimization framework allows researchers to

extensively explore relationships between resistance

surfaces and genetic distances without making a priori
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assumptions. This is a critical advancement over meth-

ods that iteratively optimize, combine and reoptimize

resistance surfaces by varying parameters that alter the

shape and magnitude of resistance (Shirk et al. 2010).

Such procedures are generally conducted over a limited

parameter space and the direction of the effect must be

predetermined. This is particularly problematic given

the growing consensus that expert opinion often poorly

describes the ecological processes being modelled (Shirk

et al. 2010; Charney 2012). Although optimization of

univariate resistance surfaces is relatively tractable, bio-

logical realism may be better captured by using multi-

variate resistance surfaces, which can become

exceedingly complex to parameterize (Spear et al. 2010).

We used the Ricker and monomolecular functions to

transform resistance surfaces, which gave us great flexi-

bility to explore parameter space in an unbiased man-

ner (Fig. 2). When paired with linear mixed-effects

models, we found that AIC was an effective objective

criteria to optimize each resistance surface using our

optimization algorithm. A recent simulation and optimi-

zation study by Graves et al. (2013) found that the Man-

tel correlation surface can be very flat over large

regions of parameter space, which can pose significant

challenges to optimization. In this study, we did not

find excessively flat response surfaces. In contrast, we

found one clear trough in parameter space (Appendix

S3, Supporting information) that indicates the strong

identifiability of a nonlinear relationship between gene

flow and water loss rates. Given the flexibility of our

utilized functions and the pronounced topography of

the resultant response surfaces (Appendix S3, Support-

ing information), we are confident that we have cor-

rectly identified water loss, a physiologically based,

ecologically explicit resistance surface, as a primary dri-

ver of genetic differentiation in P. albagula at the scale

we assessed.

A primary goal in our study was to develop spatial

resistance surfaces with direct ecological meaning and

to test their relationship with spatial genetic differentia-

tion. In finding that the rate of water loss best described

genetic differences between population, we have made

a clear, mechanistic link between the observed genetic

pattern and the process underlying it. Importantly, each

of our ecological resistance surfaces was a composite of

multiple landscape features, estimated using field-col-

lected data and a variety of statistical models (Peterman

2013; Peterman & Semlitsch 2013). Previous studies

have converted habitat suitability models to resistance

surfaces (Wang et al. 2008; Richards-Zawacki 2009;

Koen et al. 2012; Wang 2012), and this approach repre-

sents a step towards testing hypotheses concerning how

habitat use and species occurrence on the landscape

relate to genetic differentiation. Although these methods

generally integrate multiple habitat features into a sin-

gle resistance surface, they are often used as ‘black box’

methods (Yackulic et al. 2013) and the resultant surface

lacks a clear connection to ecological processes (but see

Laiolo & Tella 2006; Wang et al. 2008; Koen et al. 2012).

Garroway et al. (2011), through their use of multiple

regression on distance matrices, made a significant

advancement by combining landscape features using

regression coefficients, and while the combined surface

best explained genetic distance between populations,

direct ecological meaning is still unknown.

We have gone beyond correlation of landscape fea-

tures that influence connectivity and specifically tested

hypotheses concerning how ecological processes affect

population connectivity. By conducting relevant field

research and experimentation, we were able to derive

composite resistance surfaces representing aspects of

population dynamics (abundance) and physiology

(water loss). Directly combining multiple resistance sur-

faces in a coherent manner poses significant challenges

with no clear analytical framework. In our study, we

only assessed individual and composite resistance sur-

faces in isolation, and it is possible that other secondary

factors could contribute to movement and connectivity

of P. albagula beyond water loss alone. The use of sur-

faces that have a direct ecological meaning allows

researchers to formulate more specific hypotheses about

how and why observed patterns of spatial genetic struc-

ture have emerged, a significant advancement beyond

simply concluding that certain combinations of land-

scape features affect dispersal. However, caution must

still be taken, as there is no guarantee that surfaces rep-

resenting one aspect of an organism’s ecology (e.g.

abundance) will be a relevant predictor of genetic dif-

ferentiation across the landscape. While methods for

optimizing and weighting multivariate resistance sur-

faces continue to be sought, we advocate that, regard-

less of future developments in optimization procedures,

greater emphasis be placed on developing resistance

surfaces with clear and direct ecological meaning. To

date, landscape genetics has been a predominantly

exploratory field (Manel & Holderegger 2013), seeking

correlations with habitat and landscape features, with

plausible ecological explanations being built around

these results. While novel insight into cryptic or hard to

study species will always be a strength of landscape

genetics, it should not preclude the inclusion of empiri-

cal, field-derived ecological data.
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