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1  | INTRODUC TION

First coined in 2003, landscape genetics has experienced rapid 
growth in both the number of studies and range of analytical meth-
ods utilized (Manel, Schwartz, Luikart, & Taberlet, 2003; Storfer, 
Murphy, Spear, Holderegger, & Waits, 2010). This integrative field 
draws on landscape ecology, spatial statistics, and population genet-
ics to address a wide range of questions. Landscape genetic stud-
ies frequently seek to understand how landscape features affect 
spatial genetic structure (Manel et al., 2003; Storfer et al., 2007), 
often with a goal of quantifying the effective distance between sam-
ple locations as a function of the landscape matrix (McRae, 2006; 
Spear, Peterson, Matocq, & Storfer, 2005). In the absence of direct 

observation of movement or dispersal across the landscape, effec-
tive distances are often interpreted as functional connectivity (e.g. 
Cushman, McKelvey, Hayden, & Schwartz, 2006). However, func-
tional connectivity and effective distance require an appropriately 
parameterized resistance surface. As defined by Spear, Balkenhol, 
Fortin, McRae, and Scribner (2010), a resistance surface is a spa-
tial layer that assigns a value to each landscape or environmental 
feature, with values representing the extent to which that feature 
 impedes or facilitates connectivity for an organism.

Resistance values of surfaces have been determined using a va-
riety of methods, including: habitat suitability models (e.g. Wang, 
Yang, Bridgman, & Lin, 2008), telemetry (e.g. Driezen, Adriaensen, 
Rondinini, Doncaster, & Matthysen, 2007) and statistical 
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Abstract
1. Understanding how landscape features affect functional connectivity among 

populations is a cornerstone of spatial ecology and landscape genetic analyses. 
However, parameterization of resistance surfaces that best describe connectivity 
is a challenging and often subjective process.

2. ResistanceGA is an R package that utilizes a genetic algorithm to optimize re-
sistance surfaces based on pairwise genetic data and effective distances calcu-
lated using CIRCUITSCAPE, least cost paths or random-walk commute times. 
Functions in this package allow for the optimization of categorical and continuous 
resistance surfaces, and simultaneous optimization of multiple resistance 
surfaces.

3. ResistanceGA provides a coherent framework to optimize resistance surfaces 
without a priori assumptions, conduct model selection, and make inference about 
the contribution of each surface to total resistance.

4. ResistanceGA fills a void in the landscape genetic toolbox, allowing for unbiased 
optimization of resistance surfaces and for the simultaneous optimization of mul-
tiple resistance surfaces to create novel composite resistance surfaces, but could 
have broader applicability to other fields of spatial ecological research.
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models using genetic response data (e.g. Dudaniec et al., 2013). 
Parameterization of resistance values frequently relies on expert 
opinion (Zeller, McGarigal, & Whiteley, 2012) and less often on em-
pirical movement studies (e.g. Stevens, Verkenne, Vandewoestijne, 
Wesselingh, & Baguette, 2006) or spatial predictions of ecological 
processes (Peterman, Connette, Semlitsch, & Eggert, 2014). All of 
these are acceptable approaches, but each come with caveats. Of 
particular concern is that expert opinion often fails to accurately 
describe the biological or ecological process(es) being modelled 
(Charney, 2012; Shirk, Wallin, Cushman, Rice, & Warheit, 2010). 
Even when such processes are known and explicitly modelled, 
there is no guarantee that these processes will relate meaningfully 
to the movement of genes across the landscape (Khimoun et al., 
2017; Peterman et al., 2014). As such, methods to objectively pa-
rameterize resistance surfaces using genetic data are needed.

Unfortunately, assignment of resistance values is often a trial and 
error process that assesses a limited parameter space. This has led re-
searchers to implement exhaustive search and optimization methods. 
Wang, Savage, and Shaffer (2009) used an exhaustive search approach 

to optimize resistance values of a categorical land cover surface, while 
Graves, Beier, and Royle (2013) used a search algorithm to maxi-
mize Mantel r correlation between inter- individual genetic distance 
and least cost path distance. Although the optimization procedures 
of Graves et al. (2013) recovered the maximum Mantel r when it ex-
isted, they found that resistance estimates were often imprecise and 
much smaller than simulated resistance values. They also found that 
response surfaces were quite flat, making identification of a global op-
timum difficult. In contrast, Peterman et al. (2014) found well- defined 
global optima when using Ricker and monomolecular data transfor-
mations in combination with optimization algorithms. However, the 
optimization procedure utilized by Peterman et al. (2014) is limited to 
continuous resistance surfaces (e.g. temperature, canopy cover) and 
requires an inefficient search of all possible data transformations.

There are numerous challenges to optimizing resistance surfaces 
based on pairwise genetic data. Among these challenges, foremost 
is the high dimensionality that resistance surfaces can have. For in-
stance, if a land use, land cover surface consists of four land cover 
classes, there are 24 possible ways of ranking these classes even 

F IGURE  1 There are eight continuous 
resistance surface data transformations 
implemented in ResistanceGA. Prior to 
transformation, the original continuous 
resistance surface had values ranging 
from 0–10. The shape and magnitude of 
each transformation are each controlled 
by a single parameter. All transformations 
in the figure have a shape parameter value 
of 3, and maximum value parameter of 
100. Linear relationships are not explicitly 
incorporated, but all monomolecular 
functions become linear as the shape 
parameter increases
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before resistance values are assigned. Second, there is currently 
no closed- form expression to determine the landscape resistance 
values that describe pairwise effective distances, potentially mak-
ing optimization intractable with gradient- based algorithms. Finally, 
landscape features and environmental gradients do not exist in iso-
lation. Therefore, an ideal solution to resistance surface optimization 
is to simultaneously optimize multiple resistance surfaces to create a 
composite resistance surface. The ResistanceGA package for the 
R programming environment (R Core Team, 2017) has been devel-
oped to address these issues, filling a void in the landscape genetic 
toolbox. The initial impetus for this package was landscape genetic 
analyses, but any pairwise measures across the landscape (e.g. 
movement rates) could be utilized to optimize resistance surfaces 

with ResistanceGA, potentially making it a valuable, general tool 
for resistance surface optimization.

2  | DESCRIPTION

2.1 | Genetic algorithms

Genetic algorithms (GAs) provide a powerful and flexible stochastic 
optimization framework for finding solutions to both discrete and 
continuous optimization problems (Holland, 1975). Inspired by bio-
logical principles, genetic algorithms create a population of individu-
als (offspring) with traits (parameters to be optimized) encoded on 
“chromosomes”. The genotypes (parameter combinations) of each 

TABLE  1 Arguments of the required preparation functions and their default settings. Only one of either CS.prep or gdist.prep needs 
to be run, depending upon whether optimization will use CIRCUITSCAPE or gdistance

Function Arguments Defaults Comments

CS.prep n.POPS Must be defined

response NULL Must be defined to run optimization

CS _ Point.File Must be defined

CS.program “C:/Program Files/Circuitscape/
cs_run.exe”‘

Default Windows installation location 

Neighbor.Connect 8

gdist.prep n.POPS Must be defined

response NULL Must be defined to run optimization

samples Must be defined

transitionFunction function(x) 1/M(x)

directions 8

longlat FALSE

GA.prep ASCII.dir Must be defined .asc files should be in their own directory 
or compiled in a Raster Stack

Min.Max “max” Must be “max” when optimization with ga

min.cat 0.0001

max.cat 2,500

max.cont 2,500

cont.shape NULL

pop.mult 15

percent.elite 0.05

type “real- valued” Must be “real- valued” 

pcrossover 0.85

pmutation 0.1

maxiter 1,000

run 25

keepBest TRUE

population “gareal_Population”

selection “gareal_lsSelection”

crossover “gareal_blxCrossover”

mutation “gareal_raMutation”

seed NULL

quiet FALSE
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individual solve the fitness function, and the fittest individuals from 
each generation survive to reproduce (Sivanandam & Deepa, 2007). 
The GA evolution process is facilitated by exploration and exploita-
tion (Scrucca, 2013). Exploration of parameter space occurs through 
random generation of new parameter values resulting from muta-
tion, as well as exchange of genetic information through crossover. 
Exploitation reduces diversity in the population by selecting the fit-
test individuals each generation. The population continues to evolve 
until a sufficient number of generations have passed without an 
 improvement in fitness (Scrucca, 2013).

2.2 | Resistance optimization

ResistanceGA utilizes the general- purpose genetic algorithm from 
the GA R package (Scrucca, 2013). Briefly, the optimization proceeds 
as follows:

1. The original raster surface is imported into R. If the surface 
is continuous, it is rescaled to range from 0–10, preserving 
the relative spacing between all levels.

2. The evolution process starts by generating a random initial popu-
lation of size n (default = 15× > number of parameters being opti-
mized). If a continuous surface, the selected parameters determine 
(1) which of eight transformations will be applied (Figure 1); (2) the 
shape of the transformation; (3) the maximum resistance value. If 
a categorical surface, each level of the resistance surface is reclas-
sified to the values of the parameters. Starting values for all pa-
rameters in the initial population are randomly chosen within the 
specified range (see Table 1 for defaults).

3. Using the spatial locations where genetic samples have been col-
lected, either CIRCUITSCAPE (McRae, Dickson, Keitt, & Shah, 
2008; McRae & Shah, 2009) is called from R to calculate pairwise 
effective distances across the landscape created in step 2, or 

TABLE  2 Primary user functions of the ResistanceGA package

Function Returned objects Description

all _ comb Named list Wrapper function used to implement single surface and multisurface optimization, 
followed by bootstrap analysis of the results

Combine _
Surfaces

R raster object Combine multiple resistance surfaces into a new composite surface based on 
specified parameters

CS.prep Named list This function prepares and bundles the inputs necessary to run CIRCUITSCAPE

GA.prep Named list This function prepares and compiles the objects and commands needed to execute 
the genetic algorithm

gdist.prep Named list This function prepares and bundles the inputs necessary to run gdistance

Grid.Search contour plot, R data object For a single continuous surface, this function can be used to visualize the AICc 
response surface

k.smooth R raster object Applies Gaussian smoothing function to raster surface

lower R data object Convenience function to obtain the lower half of a square distance matrix

MLPE.lmm lmer object Fits a maximum likelihood population effects mixed effects model in lme4

MS _ optim GA object, diagnostic plots, .txt 
summary file

This is a wrapper function for simultaneously optimizing multiple surfaces

MS _ optim.scale GA object, diagnostic plots, .txt 
summary file

This is a wrapper function for simultaneously optimizing multiple surfaces with 
Gaussian kernel smoothing

Plot.trans ggplot object Implements and plots a continuous surface transformation

Resist.boot R data object Conduct bootstrap analysis with optimized resistance surfaces

Resistance.tran R raster object,.asc file Applies specified transformation to continuous resistance surface and returns a 
raster object. Optionally, a.asc file can be exported

Run _ CS R raster object or R data object This function executes CIRCUITSCAPE from R and returns either the lower half of 
the pairwise resistance distance matrix or the cumulative current map produced by 
CIRCUITSCAPE

Run _ gdistance commuteDistance or costDis-
tance object from 
gdistance 

This function executes gdistance and returns the either a commuteDistance or 
costDistance matrix object

SS _ optim .tif files,.csv summary tables This is a wrapper function for optimizing surfaces in isolation. All surfaces in a 
common directory will be optimized in turn, and numerous summary tables of 
optimized parameters and objective function values are produced

SS _ optim.scale .tif files,.csv summary tables This is a wrapper function for optimizing surfaces in isolation with Gaussian kernel 
smoothing. All surfaces in a common directory will be optimized in turn, and 
summary tables of optimized parameters and objective function values are 
produced
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pairwise distances are calculated from least cost paths or random-
walk commute times (equivalent to CIRCUITSCAPE resistance 
distance) using the R package gdistance (van Etten, 2017).

4. A linear mixed effects model with a maximum likelihood popu-
lation effects parameterization (MLPE) is fit to the data. 
Pairwise genetic distance is the response and the scaled and 
centred pairwise effective distance is the predictor. The MLPE 
mixed effects parameterization accounts for non-independ-
ence among the pairwise data (Clarke, Rothery, & Raybould, 
2002), and Shirk, Landguth, and Cushman (2017) recently found 
that MLPE models performed best in landscape genetic model 
selection among the seven regression methods assessed.

5. An objective function, specified by the user, is obtained from the 
fitted MLPE model: log-likelihood, AIC, or marginal R2 (Nakagawa 
& Schielzeth, 2013).

6. Steps 2–5 are repeated until the specified number of n individuals 
have been created. The genetic algorithm then conducts selection 
on the population, and the individuals with the best objective 
function values are carried over to the next generation to form 
the reproducing population (default = top 5% retained each gen-
eration). A new population is then formed through mutation and 
crossover.

7. Steps 2–6 are repeated until the specified number of generations 
have passed without improvement to the objective function.

2.3 | Continuous surfaces

There are eight transformations that can be applied to continuous 
surfaces (Figure 1). Transformations are based on Ricker (Equation 1) 

and monomolecular (Equation 2) functions (Bolker, 2008), as well 
as rescaling functions to keep values in positive parameter space. 
Transformations of resistance surfaces, r, are controlled by shape (x) 
and magnitude (b) parameters that are varied during optimization 
(Peterman et al., 2014).

The genetic algorithm searches combinations of transforma-
tions, magnitude parameters and shape parameters. Linear trans-
formations are not explicitly included, but all monomolecular 
functions become linear as the shape parameter increases in value. 
In this way, linear responses can be modelled without increasing 
the number of transformations assessed by the genetic algorithm. 
It is possible to exclude transformations from consideration during 
optimization.

2.4 | Categorical surfaces

Categorical or feature surfaces, such as land cover or roads, can 
also be optimized using ResistanceGA. A surface is considered 
categorical in ResistanceGA if it contains 15 or fewer levels. To 
make this process tractable, it is necessary to hold the value of one 
level constant throughout optimization. Because pairwise resistance 
values are relative, failing to hold one level constant can result in 
multiple equivalent solutions, and the algorithm may fail to reach an 
optimal solution (e.g. relative resistance values of 1, 5 and 10 are 
equivalent to 2, 10 and 20). See Appendix S1 for more detail about 
categorical resistance surface optimization.

(1)y= r exp−bx

(2)y= r(1−exp−bx)

F IGURE  2 Run times for calculating least cost distance (costDistance), random- walk commute time (commuteDistance), or resistance 
distance (CIRCUITSCAPE) at different sample size and grid size combinations. Sample sizes of 25, 50, 75 and 100 were assessed on grid 
surfaces that contained 502, 1002, 2502, 5002, 1,0002 and 2,0002 grid cells. Each sample- grid size combination was run ten times and 
the mean runtime is presented in the figure. Error bars were not visible or meaningful at the scale that the y- axis is presented, but there 
generally was minimal variation between replicate runs



     |  1643Methods in Ecology and EvoluonPETERMAN

2.5 | Scaling resistance surfaces

Scale is a central concept to spatial ecology (Wiens, 1989), but 
has not been extensively addressed in landscape genetics re-
search (Galpern, Manseau, & Wilson, 2012; Keller, Holderegger, 
& van Strien, 2013). One way to assess scale is through ecological 

neighbourhoods (Addicott et al., 1987), wherein a ‘neighbourhood’ 
can be determined through the optimization of a kernel smooth-
ing parameter. Using the R package spatstat (Baddeley, Rubak, 
& Turner, 2015), a Gaussian kernel smoothing is applied to either 
a continuous or binary resistance surface prior to applying one 
of the eight transformations. The optimized SD of this smooth-
ing is indicative of the ecological neighbourhood for that surface. 
Scale can be optimized with single surfaces in isolation or sepa-
rate scales can be optimized for each surface during multisurface 
optimization.

2.6 | Multisurface resistance optimization

ResistanceGA can simultaneously optimize multiple resistance 
surfaces to create a novel composite resistance surface. During 
optimization, each surface in the multisurface analysis is modi-
fied using the methods described above. All modified surfaces 
are then summed together to create a single, composite resist-
ance surface, which is then used to calculate pairwise effective 
distances.

3  | OVERVIE W OF RESISTANCEGA  
FUNC TIONS

ResistanceGA optimization functions rely heavily on the R pack-
age raster (Hijmans, 2014) to import, export and manipulate 
spatial raster (.asc) files, the gdistance package to calculate cost 
distances (van Etten, 2017), and lme4 (Bates, Maechler, Bolker, & 
Walker, 2014) to fit mixed effects models. All functions available in 
ResistanceGA are summarized in Table 2.

4  | IMPLEMENTATION

Resistance surfaces can be optimized using effective distances cal-
culated using cost distances (least cost path), random- walk com-
mute time, or using circuit- based resistance distances. Cost and 
commute distances are calculated using the R package gdistance 
(van Etten, 2014), while electrical current resistances are calculated 
using CIRCUITSCAPE (v4.0 or greater; McRae & Shah, 2009). Prior 

F IGURE  3 Visualization of how the categorical and continuous 
surfaces were processed to generate the true composite resistance 
surface, and how each surface was optimized during multisurface 
optimization with ResistanceGA. The black points in the original 
categorical panel indicate the 25 sample locations. Inset plots on 
the continuous surface panels show the relationship between the 
original values and the values following transformation. Although 
surfaces were not perfectly optimized to match the true data- 
generating surfaces, the resulting composite is qualitatively and 
quantitatively similar, and perfectly correlated, as indicated by 
the distribution of resistance values and pairwise correlation plot 
(lower right)
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to running any of the optimization functions the CS.prep/gdist.
prep, and GA.prep preparation functions must be run. These func-
tions create and format the inputs and data objects necessary to run 
CIRCUITSCAPE/gdistance, parameterize the genetic algorithm, 
and fit MLPE mixed effects models. Functions have been developed 
to require a minimum input from the user, however, all available 
 arguments of the ga function can be set by the user to modify the 
genetic algorithm. The arguments and default settings of the prepa-
ration functions are described in Table 1.

Genetic algorithms are stochastic optimization procedures, 
therefore it is highly advised to run all optimizations at least twice 
to confirm convergence and parameter estimates. Also, because 
bounds are placed on the parameter space searched, if the optimized 
resistance values are at or near the limits set, the optimization should 
be rerun after expanding the search space. The all _ comb func-
tion has been created to facilitate comprehensive analyses, including 
replication. This function will carry out single surface optimization 
followed by multisurface optimization, with all possible combinations 
of surfaces being assessed. After optimization, a bootstrap analysis 
is conducted. This bootstrap procedure subsamples the pairwise re-
sponse and distance matrices generated from each optimized surface 
(without replacement), refits the MLPE model, and calculates fit sta-
tistics for each. The frequency that a model is the top- ranked model 
is used to assess the level of support for each surface.

Genetic algorithms are effective at finding an optimal solution, 
but they can be computationally intensive. To ensure that parameter 
space is adequately searched, the population of individuals produced 
each generation must be of sufficient size. In ResistanceGA, the 
default setting is to produce a population that is 15 times the num-
ber of parameters being optimized. For example, when a continuous 
surface is being optimized, 45 individuals (3 parameters × 15) will be 
produced each generation. A typical optimization takes 50–300 gen-
erations, resulting in the creation of 2,250–13,500 resistance sur-
faces and CIRCUITSCAPE/gdistance runs. As such, the greatest 
impediment to optimizing resistance surfaces is time. Both the spatial 
extent and the number of sample locations affect the time needed to 
calculate pairwise resistances (Figure 2). Although CIRCUITSCAPE 
has become a widely adopted and often preferred method of de-
termining pairwise resistances, its use with ResistanceGA may be 
too slow. However, random- walk commute time (function commu-
teDistance in gdistance) results in nearly perfectly correlated 

F IGURE  4 Scatterplot showing the correlation between true 
pairwise response data and simulated pairwise response data 
with random normal noise added (a), and the correlation between 
the pairwise simulated response data and the pairwise Euclidean 
distances (b). The Mantel r for each correlation is .45 and .15, 
respectively

TABLE  3 Summary table reporting the true data- generating parameter values of the two surfaces comprising the composite resistance 
surface and the optimized resistance values determined through three replicate multisurface optimization runs with ResistanceGA using 
the all _ comb function. Although transformation and resistance values were not exactly recovered during optimization, and different 
values were obtained between replicate runs, the resultant optimized resistance surfaces closely match the true surface and the absolute 
mean difference in resistance values of all pixel cells between the true resistance surface and optimized surfaces is minimal

Parameter Truth
Optimized –  
replicate 1

Optimized –  
replicate 2

Optimized –  
replicate 3

Categorical – class 1 1 1 1 1

Categorical – class 2 250 310.9 412.6 310.0

Categorical – class 3 150 192.2 228.2 175.7

Continuous – transformationa 7 5 7 7

Continuous – Shape 2.75 14.9 14.3 14.9

Continuous – Max 150 294.5 481.5 368.1

Percent contribution: Categorical 66.8% 57.7% 58.4% 58.6%

Percent contribution: Continuous 33.2% 42.3% 41.6% 41.8%

Mean resistance value (range) 96.8 (1–209) 142.3 (1–226) 181.3 (1–321) 137 (1–241)

Correlation with truth 1.00 1.00 1.00

Absolute mean difference (±SD) 45.85 (±13.27) 84.46 (±34.58) 39.99 (±13.31)

a7 is the numeric code for an inverse monomolecular transformation; 5 is the numeric code for a reverse monomolecular transformation.
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(r ≥ .99) resistance values that differ only in scaling (van Etten, 2017). 
On average, across all sample and grid sizes assessed during testing, 
commute time is 2.1 times faster than CIRCUITSCAPE (Figure 2). To 
further reduce the optimization time when using gdistance, the 
GA optimization can be parallelized. Additional strategies to reduce 
runtimes include modifying the connection scheme from the default 
setting of 8–4, and reducing the resolution of the resistance surfaces 
(McRae et al., 2008).

5  | WORKED E X AMPLE

The package vignette contains numerous examples demonstrating 
use and application of functions to optimize resistance surfaces 
in isolation, in combination, and with a Gaussian kernel smooth-
ing scaling parameter (Appendix S2). The example below uses 

simulated data provided with the package, and demonstrates how 
ResistanceGA can be used to optimize resistance surfaces, con-
duct model selection to determine the best supported resistance 
surface, and make inference about the contribution of each surface 
to total resistance.

Using the pairwise response data (25 sample locations) and 
the categorical, continuous, and feature surfaces (each 502 pixels) 
provided with ResistanceGA, a true, data- generating, compos-
ite resistance surface was created by assigning resistance values 
of 1, 250 and 150 to the three- class categorical surface and then 
combining it with the continuous surface that was transformed 
using an inverse monomolecular function with a shape param-
eter of 2.75 and maximum value of 200 (Figure 3, Appendix S3). 
In this  composite resistance surface, the categorical layer is re-
sponsible for 66.8% of the total resistance, the continuous layer is 
 responsible for 33.2% of the total resistance, and the feature layer 

TABLE  5 Summary table reporting the results of a bootstrap analysis conducted using the Resist.boot function. Following 1,000 
iterations, the optimized categorical.continuous composite surface (the data- generating surface) was ranked as the best supported model in 
41% of the bootstrap iterations, which is 5% more support than received by the categorical.continuous.feature composite surface that 
contained the superfluous feature surface. In combination with the model selection results in Table 3, this provides a preponderance of 
support for the categorical.continuous composite surface

Optimized surface Avg. R2m Avg. LL Avg. AIC Avg. AICc Avg weight Avg. rank Frequency best k

categorical.continuous .148 77.44 −146.87 −146.30 0.373 1.43 75.3 6

categorical.continuous.feature .149 77.45 −146.90 −145.90 0.307 2.40 6.8 8

categorical.feature .135 76.21 −144.42 −143.85 0.148 3.14 12.8 4

categorical .131 75.79 −143.59 −143.32 0.133 3.76 3.9 6

continuous .075 71.57 −135.14 −134.87 0.013 5.51 0.4 4

continuous.feature .075 71.63 −135.26 −134.85 0.013 5.52 0.7 5

feature .053 70.14 −132.28 −132.12 0.007 7.03 0.1 3

Distance .053 70.04 −132.07 −131.99 0.007 7.21 0 2

TABLE  4 Model selection table from complete analysis of sample data included with the ResistanceGA package. Surface indicates the 
surface that was optimized. Surface names separated by a period indicate composite surfaces that resulted from multisurface optimization. 
The number of parameters fit in each model is indicated by k. AIC is the original AIC value generated from the MLPE mixed effects model, 
while ΔAICc is the AIC value adjusted for the number of populations sampled and the number of parameters optimized. ωi is the weight of 
support for surface i, given the surfaces assessed. R2m and R2c are the marginal and conditional R2 values of the fitted MLPE model, 
respectively, while LL is the log- likelihood of the MLPE model. In this analysis, the ‘categorical.continuous’ surface was the true surface. 
Three replicate optimization runs were conducted, and values in the table are from the run containing the model with the greatest  
log- likelihood value (replicate 3)

Optimized surface k AIC AICc ΔAICc ωi R2m R2c LL

categorical.continuous 4 −293.43 −284.76 0.00 0.548 .151 .151 150.71

categorical 6 −286.17 −284.17 0.59 0.408 .130 .130 147.08

categorical.feature 6 −287.95 −279.29 5.47 0.036 .136 .136 147.98

categorical.continuous.feature 8 −293.47 −276.47 8.29 0.009 .151 .151 150.74

continuous 4 −270.01 −268.01 16.75 0.000 .077 .104 139.00

Distance 2 −264.19 −267.64 17.12 0.000 .054 .097 136.09

feature 3 −264.64 −265.50 19.26 0.000 .053 .095 136.32

continuous.feature 5 −270.22 −265.06 19.70 0.000 .076 .103 139.11

Null 1 −251.75 −255.57 29.19 0.000 .000 .037 128.87
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contributes nothing (determined using the Combine _ Surfaces 
function). Pairwise cost distances were generated using the com-
muteDistance function and random normal error was added 
(Appendix S3). This “noisy response” data has a Mantel r correla-
tion of .45 with the true response data, and a Mantel r of .15 with 
Euclidean distance (Figure 4).

The all _ comb function was used to complete three 
replicate analyses of the three resistance surfaces, includ-
ing multisurface optimization of all possible combinations of 
the surfaces. Results were consistent among runs (Table 3). 
Expanded results for one replicate are hereafter reported. 
The categorical.continuous surface was top- ranked based on 
AICc, but indistinguishable from the categorical surface alone 
(Table 4; ΔAICc = 0.59, ω = 0.41). However, following the boot-
strap analysis, the categorical.continuous composite surface 
was identified as the top model 75% of the time and the cate-
gorical surface alone 3.9% of the time (Table 5), thus providing 
clear and overwhelming support for the categorical.continuous 
composite. The percent contribution of the optimized surfaces 
in the composite aligns with the data- generating composite, 
and the optimized parameter estimates align with the data- 
generating values (Table 3). The optimized surface is perfectly 
correlated with the true surface, even though not perfectly op-
timized (Figure 3, Appendix S3).

6  | DISCUSSION

True optimization of resistance surfaces is an exceedingly diffi-
cult task. Numerous approaches have been used in the past (e.g. 
Dudaniec et al., 2013; Graves et al., 2013; Shirk et al., 2010; Wang 
et al., 2009), but all either fail to completely search parameter 
space, rely on a priori assumptions or expert opinion, have minimal 
capacity to optimize multiple resistance surfaces, or are not gen-
erally applicable to both continuous and categorical data types. 
As demonstrated in the example, ResistanceGA addresses all 
of these limitations. The example also demonstrates the value 
of model ranking and bootstrap analysis as part of a resistance 
surface optimization framework. Ultimately, the optimization pro-
cedures implemented by ResistanceGA show great potential, but 
more extensive simulation studies are needed to fully understand 
the strengths and limitations of ResistanceGA in applied land-
scape genetic analyses.

7  | OBTAINING RESISTANCEGA

ResistanceGA is hosted on GitHub, and can be downloaded using 
the devtools package: 
devtools::install.github(“wpeterman/ResistanceGA”, 

      build_vignettes = TRUE)

All examples used version 4.0- 0 of ResistanceGA  
(https://doi.org/10.5281/zenodo.1164840).
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